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TL;DR: Image-Free Semantic Segmentation

Image-Free semantic Segmentation (IFSeg) via Vision-Language (VL) models 

• We propose a novel self-supervision method enabling zero-shot semantic segmentation
• Learning to classify category words can adapt pre-trained VL model for image segmentation!

no images, no dense annotations are required at all!
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Motivations: VL pre-training for semantic segmentation

VL pre-training has recently gained attention for its transferability on novel concepts in various visual tasks
• Yet, VL-driven segmentation has been under-explored (e.g., image-level vs. pixel-level tasks)
• A trivial and expensive approach has been fine-tuning with task-specific dataset (images and dense annotation)

e.g., Contrastive Image Language Pretraining (CLIP)1-based segmentation models

CLIP1 architecture DenseCLIP2 model

1. Radford et al. Learning transferable visual models from natural language supervision. In ICML 2021. https://arxiv.org/abs/2103.00020
2. Rao et al. Denseclip: Language-guided dense prediction with context-aware prompting. In CVPR 2022. https://arxiv.org/abs/2112.01518

https://arxiv.org/abs/2103.00020
https://arxiv.org/abs/2112.01518


Motivations: VL pre-training for semantic segmentation

Large-scale VL models tend to have “open-vocabulary” (e.g., thousands of classes)  knowledge of visual objects 
• VL pre-training provides a good starting point for recognizing arbitrary classes

(e.g., the category word representation may act as a zero-shot classifier)
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Motivations: VL pre-training for semantic segmentation

The fine-tuned VL semantic segmentation models show improved performances:

However, is the supervised fine-tuning the best we can leverage pre-trained VL models...?



Motivations: VL pre-training for semantic segmentation

Requirements in fine-tuning: task-specific dataset (images and dense annotation)

Pre-trained VL model Fine-tuned
segmentation model

Image segmentation task

Requirements in prior art

Can we better/fully utilize the “aligned VL representation” for semantic segmentation, 
possibly without tuning with image data and human-annotated supervision?

Image Annotation



Motivations: VL pre-training for semantic segmentation

Idea: If Vision and Language (word) have an aligned representation, words could replace the input images

• Specifically, we may utilize the semantic category words to fully replace the images and dense annotation!

Pre-trained VL model VL segmentation model

Image segmentation task

Requirements in prior art
Image Annotation

Category Words
e.g., dogs, cats, etc.



Contributions: Image-free Semantic Segmentation Task

We introduce a novel image-free semantic segmentation task via pre-trained VL models
• Goal: To perform semantic segmentation only given a set of the target semantic category words 

• But without any task-specific images and annotations
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Contributions: Image-free Semantic Segmentation Task

We introduce a novel image-free semantic segmentation task via pre-trained VL models
• Goal: To perform semantic segmentation only given a set of the target semantic category words 

• But without any task-specific images and annotations

• Target semantic categories:

• Solution: We replace the training dataset with the artificially constructed grid of category words!
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Image-free semantic segmentation

Requirements
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Contributions: Image-free Semantic Segmentation Task

Image-Free semantic Segmentation (IFSeg) via Vision-Language (VL) models 

• We propose a novel self-supervision method enabling zero-shot semantic segmentation
• Learning to classify category words can adapt pre-trained VL model for image segmentation!

no images, no dense annotations are required at all!
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Key Idea: category word tokens can serve as image tokens on their embedding space
• Cross-modal embedding space: semantically similar {visual, word} tokens are closely located (i.e., contextualized)

Contextualized Tokens
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Method: image-free training

Key Idea: category word tokens can serve as image tokens on their embedding space
• Cross-modal embedding space: semantically similar {visual, word} tokens are closely located (i.e., contextualized)
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Method: image-free training

Key Idea: category word tokens can serve as image tokens on their embedding space
• Cross-modal embedding space: semantically similar {visual, word} tokens are closely located (i.e., contextualized)

• Requirements: Then, we need a VL decoder to densely classify the tokens!
• Therefore, we introduce a pre-trained VL encoder-decoder architecture and adapt it for the semantic segmentation
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Artificial Image: 2D map of random semantic categories, constructed with the 2-step process
• In each training iteration, sample a grid of random size

• We use hyperparameter s = 32

• Then, upsample the variable-sized           to the fixed size of             using the nearest-neighbor algorithm

• We use H = W = 32

• Our method ensures the diversity of the inputs while regularizing the shapes
• Real objects tend to be a cluster of various sizes rather than being scattered

• Artificial image empirically provides efficacy comparable to the real segmentation masks

Method: artificial image (i.e., word grid)



Method: image-free training

Key Idea: category word tokens can serve as image tokens on their embedding space
• Cross-modal embedding space: semantically similar {visual, word} tokens are closely located (i.e., contextualized)

• Requirements: Then, we need a VL decoder to densely classify the tokens!
• Therefore, we introduce the pre-trained VL encoder-decoder architecture and adapt it for the semantic segmentation

The encoder-decoder networks are trained end-to-end using the cross-entropy loss of the word classification!
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Method: zero-shot semantic segmentation

After tuning with the artificial image, the model is able to segment the target semantic categories

• The VL pre-trained image backbone (e.g., ResNet) embeds the real image tokens

• Important: image backbone remains frozen during IFSeg’s training time!

• For realistic object shapes, we inject the shape extracted from the image features as post-processing

• Finally, the bilinear upsampling resizes the output to a desired shape
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Method: post-processing

• Challenge of image-free segmentation: Discrepancy of input modality between training and evaluation 
• Due to the absence of training images

• We design visual feature-based post-processing technique for better semantic segmentation
1. We first search K-nearest neighbors with the cosine distance for each image feature 

• On the frozen output embeddings of image backbone network

2. We average corresponding neighbors on the predictive distributions of the VL decoder

Post-processing

Image Segmentation Result (before) Segmentation Result (after)



Method: zero-shot semantic segmentation

After tuning with the artificial image, the model is able to segment the target semantic categories

• The VL pre-trained image backbone (e.g., ResNet) embeds the real image tokens

• Important: image backbone remains frozen during IFSeg’s training time!

• For realistic object shapes, we inject the shape extracted from the image features as post-processing

• Finally, the bilinear upsampling resizes the output to a desired shape
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Comparison with VL-baselines under two different zero-shot scenarios

• Benchmark in COCO-stuff semantic segmentation, using the mean intersection over union (mIoU) metric

• Annotation-free and Image-free scenario (left)
• +30.8 mIoU than the image-free, and +6.9 mIoU than image-aware baselines (MaskCLIP / MaskCLIP+)

• Weakly-supervised: 156 “seen” classes for training / 15 “unseen” classes for zero-shot inference (right)

• +2.1 mIoU on unseen classes, “mIoU(U)” than the strongest baseline (MaskCLIP+)

IFSeg archives a new mIoU record on both the image-free and the Weakly-supervised scenarios!

Quantitative Results
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Random sampling in the artificial image construction

• Empirical performance in terms of mIoU: Deterministic Shape < Ours ≤ GT

• Our Random Shape + upsampling approach is comparable to using GT mask as the artificial image!

Ablation Study: notes on the artificial image

Effect of random sampling

in artificial image

Input Image Deterministic Shape Ours GT Mask



Summary

We introduce Image-free semantic segmentation (IFSeg) via the pre-trained VL models
• Key idea: Semantic categories can serve as artificial image tokens in the cross-modal latent space
• We propose 2D map of random semantic categories as artificial image to train the model in an image-free manner

• Without a burden of acquiring additional training images or even segmentation annotations

• IFSeg is an effective baseline for the image-free semantic segmentation task
• We also highlight the broad applicability of this task to evaluate tending VL models
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