

MetaViewer: Towards A Unified Multi-View Representation

Ren Wang[§], Haoliang Sun[§], Yuling Ma[§], Xiaoming Xi[§], Yilong Yin^{§, §} § Shandong University, China. § Shandong Jianzhu University, China.

Poster: Wed-AM-320

Project page: https://xxlifelover.github.io/MetaViewerProjectPage/

Summary

Topic—Multi-view representation learning

learning a unified entity representation from its multiple observable views, which is critical for solving downstream tasks.

Real-world entity and its multiple views

Intrinsic relation: from uniform to specific

Task: from specific to uniform

Existing methods

Our MetaViewer

specific-to-unifrom (S2U) pipeline

unifrom-to-specific (U2S) pipeline

I . Backgorund

Exitsting methods (a) and (b) follow the *S2U* pipeline, where the unified representation is obtained by fusing or concatenating view-specific features. They suffer from

1) manually pre-specified fusion strategies;

2) meaningless view-private information.

MetaViewer follows a novel *U2S* pipeline, which builds a meta-learner to learn "how to transform from a unified representations to view-specific features". It

1) meta-learns a data-oriented fusion manner;

2) decouples the mining and fusion of view features via a bi-level optimization process.

Overall Architecture

1 data processing + 2 optimization levels + 3 main modules

Overall Architecture

1 data processing + 2 optimization levels + 3 main modules

 θ_v denotes parameters specific to view v in (b) and (d) modules, ω and ω_v are parameters of the meta-learner and base learner in (c) module.

Data flow

 θ_v denotes parameters specific to view v in (b) and (d) modules, ω and ω_v are parameters of the meta-learner and base learner in (c) module.

Inner-level initializes ω_v from ω and updates it on Q to learn view-specific knowledge. Based on this, **Outer-level** computes the loss on S and updates ω to learn the uniform representation.

Alg	orithm 1 Main flows in MetaViewer.
1:	Initialize ω , $\{\theta_v\}_{v=1}^V$;
2:	while not done do
3:	# Outer-level
4:	Sample and meta-split a batch set from D :
5:	$\{D_v^{batch}\}_{v=1}^V = \{S_v\}_{v=1}^V + \{Q_v\}_{v=1}^V.$
6:	while not large than the inner-level step do
7:	# Inner-level
8:	for $v=1,\ldots,V$ do
9:	Initialize $\omega_v = \omega$;
10:	Optimize $\omega_v(\omega)$ via inner-level objective.
11:	end for
12:	end while
13:	Optimize ω and $\{\theta_v\}_{v=1}^V$ via outer-level objective.
14:	end while

> Optimization objective

$$\omega^*, \{\theta_v^*\}_{v=1}^V = \arg\min \mathcal{L}^{out} \left(\{\omega_v^*(\omega), \theta_v\}_{v=1}^V; Q \right) \quad \text{Outer-level}$$
$$s.t., \ \omega_v^*(\omega) = \arg\min \mathcal{L}_v^{in} \left(\omega_v(\omega), \theta_v; S_v\right) \quad \text{Inner-level}$$

The instance of loss function

a pure implementation of MetaViewer

a variant of MetaViewer with a contrastive loss

III. Result

Results on classification tasks (top) and clustering tasks (bottom) constructed from five datasets. Bold and underline denote the best and second-best results, respectively.

Mada da	Handwritten			RGB-D			Animal			Fashion-MV			Caltech101-20		
Methods	ACC	Prec.	F-score	ACC	Prec.	F-score	ACC	Prec.	F-score	ACC	Prec.	F-score	ACC	Prec.	F-score
Baseline	87.00	87.32	87.04	14.00	06.45	07.70	71.78	65.02	63.10	87.50	87.63	87.54	75.41	51.95	46.21
DCCA [2] (2013)	88.25	89.20	88.05	30.00	21.10	22.04	62.84	61.61	60.65	84.90	85.22	83.54	71.54	45.27	39.81
DCCAE [47] (2015)	90.00	90.48	89.92	24.00	16.00	16.91	66.82	62.53	62.83	85.35	85.97	83.84	71.54	60.57	43.25
MIB [8] (2020)	79.00	83.90	78.52	33.00	28.50	27.37	59.32	63.78	62.13	86.80	86.80	86.55	72.72	61.64	52.47
WTNNM [15] (2020)	96.77	96.20	96.36	45.00	47.18	43.90	69.90	67.40	65.48	94.50	94.50	94.58	83.27	80.49	74.78
TLRR [23] (2021)	97.00	97.05	97.17	49.00	53.32	47.66	71.90	69.52	68.35	96.35	96.28	96.40	85.55	77.30	75.24
MFLVC [51] (2022)	94.00	94.20	94.01	44.00	46.09	41.81	75.62	72.17	70.81	96.50	96.52	96.49	85.37	71.83	69.07
DCP [27] (2022)	<u>97.25</u>	<u>97.30</u>	<u>97.24</u>	37.00	28.87	30.78	<u>77.95</u>	73.43	70.01	89.25	82.06	82.90	92.48	89.41	84.58
MVer-R (ours)	97.00	97.08	97.00	<u>51.00</u>	<u>53.65</u>	<u>48.73</u>	77.69	<u>73.91</u>	<u>71.22</u>	<u>96.85</u>	96.37	96.48	92.28	<u>89.46</u>	84.21
MVer-C (ours)	97.75	97.90	97.75	56.00	55.20	52.78	78.03	74.56	71.55	97.70	96.78	97.07	<u>92.16</u>	90.68	85.72
Methods	Handwritten			RGB-D			Animal			Fashion-MV			Caltech101-20		
wiethous	ACC	NMI	ARI	ACC	NMI	ARI	ACC	NMI	ARI	ACC	NMI	ARI	ACC	NMI	ARI
Baseline	43.55	5 52.19	25.68	48.30	80.97	04.95	45.79	66.22	33.87	50.91	45.98	32.09	36.63	48.96	23.54
DCCA [2] (2013)	57.25	69.80	52.15	51.00	82.99	9 52.02	60.34	68.51	46.10	70.70	80.42	61.80	38.62	50.88	22.73
DCCAE [47] (2015)	63.00	75.04	59.29	48.00	81.58	48.34	65.17	66.82	48.83	71.05	81.12	62.34	36.59	52.24	25.25
MIB [8] (2020)	63.25	67.58	52.16	50.00	81.13	3 51.27	60.89	61.98	52.49	57.20	73.83	47.62	35.98	47.00	22.18
WTNNM [15] (2020)	75.69	77.62	61.51	52.54	81.95	5 52.46	71.92	71.43	61.06	83.33	86.30	77.99	39.74	55.58	26.92
TLRR [23] (2021)	78.60) 77.99	66.40	52.87	82.38	53.37	69.79	73.01	61.23	79.54	84.01	78.54	40.18	52.38	27.60
MFLVC [51] (2022)	64.00	64.53	48.85	53.00	83.31	54.07	74.10	76.08	64.28	83.20	88.75	78.93	36.59	58.36	26.87
DCP [27] (2022)	66.25	5 70.56	56.10	52.00	82.04	52.64	72.77	74.02	65.48	62.60	68.38	54.30	36.79	44.37	23.50
MVer-R (ours)	75.00	78.53	67.21	53.00	82.41	53.04	76.49	78.25	65.28	80.80	88.13	75.05	41.87	58.52	29.19
MVer-C (ours)	86.25	5 78.96	72.25	57.00	84.97	57.07	75.92	78.01	66.07	85.40	88.76	80.07	45.12	60.86	35.00

Sensitivity studies on key hyperparameters

IV. Disscuss

We analyze proposed MetaViewer in depth from two aspects: the pipeline (left) and the fusion strategy (right).

Left: S2U vs. U2S

U2S update parameters ω by observing "the learning process from a unified representation to view-specific features".

Right: manual design vs. meta-learning

MetaViewer balances information from all views instead of just the salient one (i.e., View 1).

Thanks

Project Page:

https://xxlifelover.github.io/MetaVi ewerProjectPage/

Towards Intelligence MEchanism (TIME) Lab: <u>http://time.sdu.edu.cn/</u>