

Efficient and Intelligent Computing Lab

Castling-ViT: Compressing Self-Attention via Switching Towards Linear-Angular Attention During Vision Transformer Inference

<u>Haoran You^{1*}</u>, Yunyang Xiong^{2*}, Xiaoliang Dai², Bichen Wu², Peizhao Zhang², Haoqi Fan², Peter Vajda², and Yingyan (Celine) Lin¹

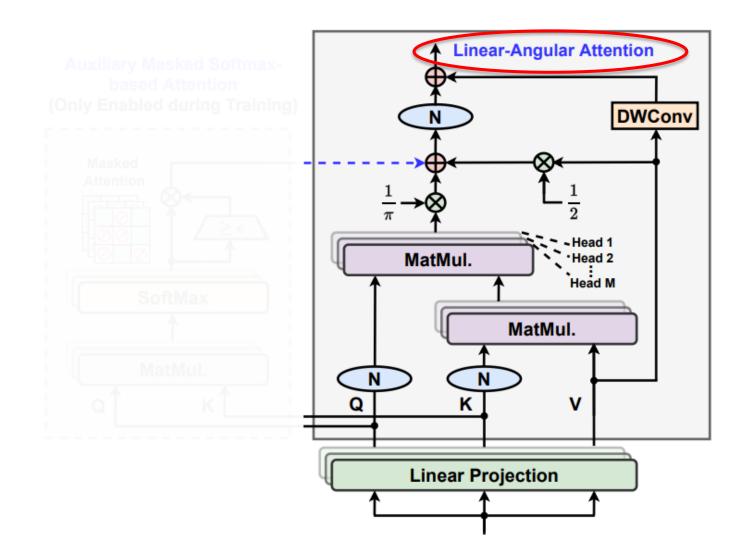
> ¹Georgia Institute of Technology ²Meta Research Session ID: WED-PM-199

Quick Review (1 min)

Executive Summary

Contribution 1: Linear-angular attention

Decompose angular kernels into linear terms and high-order residuals

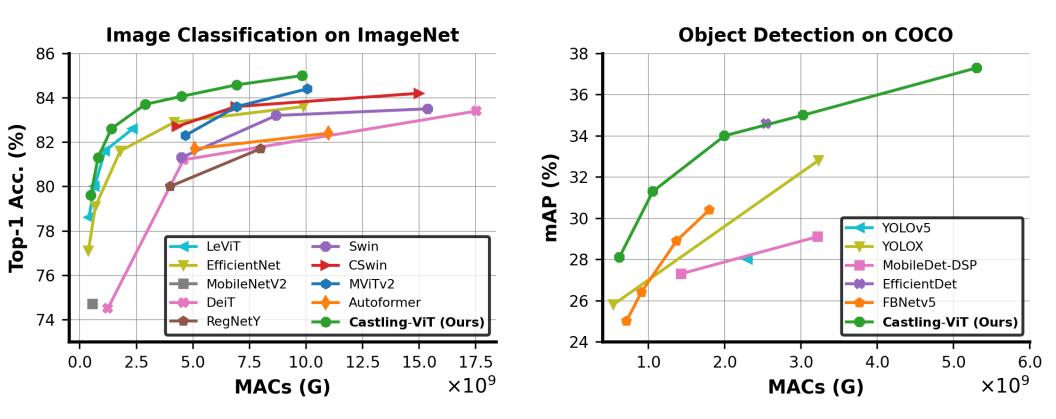


Executive Summary

- Contribution 1: Linear-angular attention
 - Decompose angular kernels into linear terms and high-order residuals
- Contribution 2: Approximate high-order residuals
 - Two parameterized modules to approximate high-order residuals



Executive Summary



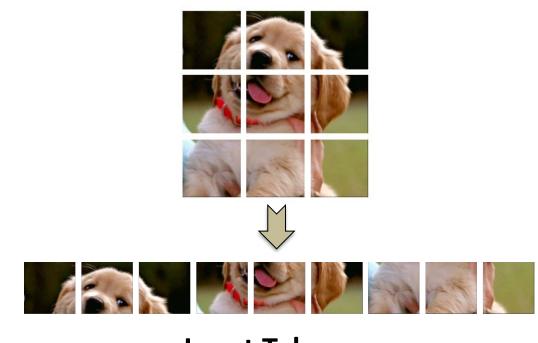
Experiment results (over vanilla softmax ViTs)

- 1.8% higher accuracy or 40% MACs reduction on classification tasks
- 1.2 higher mAP on detection tasks

Full Presentation (7 min)

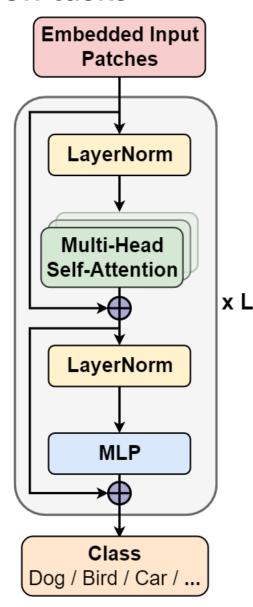
Background of Vision Transformer (ViTs)

- ViTs achieve SOTA performance on various vision tasks
 - Input: 2D image → input tokens/patches



Input Tokens

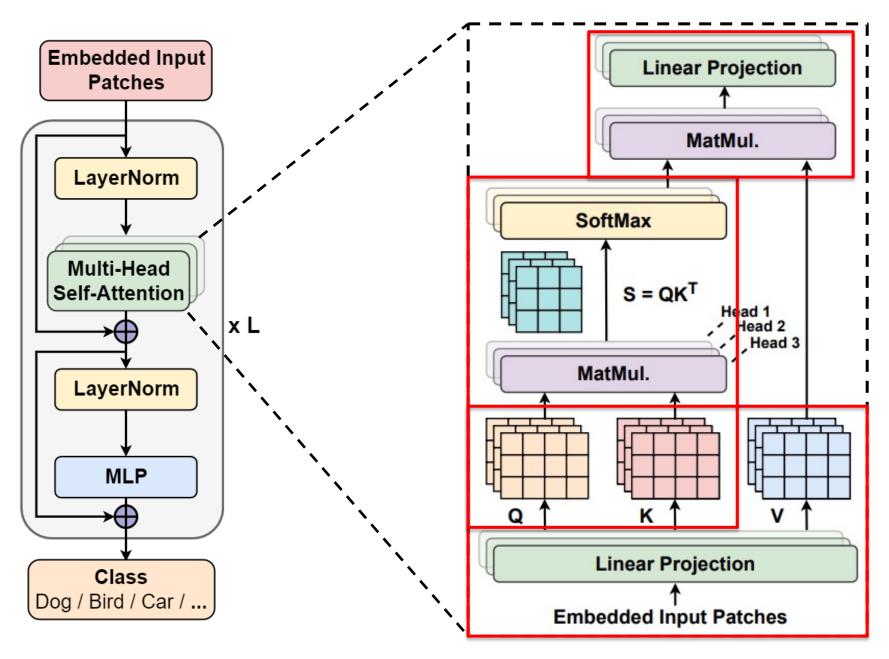
Core Model: Self-Attention and MLP



ViT Models

Background of Vision Transformer (ViTs)

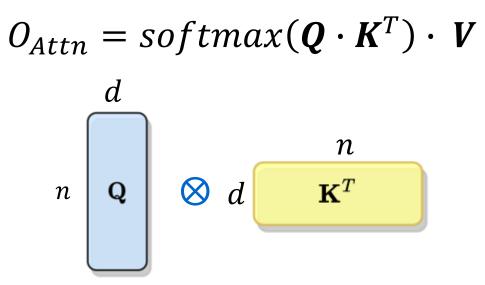
Illustrate the core self-attention module



Bottlenecks of ViTs

Self-attention is one of the runtime bottleneck [1,2,3]

Why?



[1] H. You et al, HPCA 2023
[2] J. Dass et al, HPCA 2023
[3] H. Fan, et al, MICRO 2022

Attention's quadratic complexity: Time: $O(n^2 d)$, Memory: $O(n^2)$

n : number of tokens (e.g., 196~16K)

d : hidden dimension per head (e.g., 64)

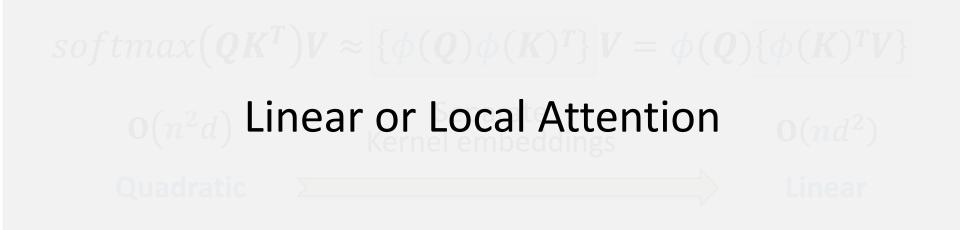
Previous Efficient Linear Attention

 Decompose the similarity measurement function, e.g., softmax or EXP(·), into separate kernel embeddings

$$softmax(QK^T)V \approx \{\phi(Q)\phi(K)^T\}V = \phi(Q)\{\phi(K)^TV\}$$
 $0(n^2d)$ Separate
Kernel embeddings $0(nd^2)$ Quadratic

Motivating Research Question

Previous SOTA Linear or Local Attention



 But all these linear or local approximations suffer from large accuracy drops; Our research question is:

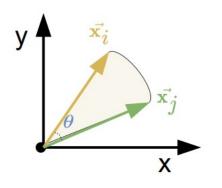
Can ViTs learn both global and local context while being more efficient during inference?

Proposed Castling-ViT

- Angular kernel from a spectral perspective
 - Spectral angle between two vectors:

$$\theta(\mathbf{x}_i, \mathbf{x}_j) = \arccos\left(\frac{\langle \mathbf{x}_i, \mathbf{x}_j \rangle}{\|\mathbf{x}_i\| \cdot \|\mathbf{x}_j\|}\right)$$

Example of 2D inputs:



Angle in a 2D input space

Angular kernel from a spectral perspective

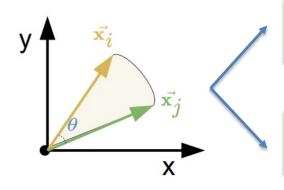
• Spectral angle between two vectors

$$\theta(\mathbf{x}_i, \mathbf{x}_j) = \arccos\left(\frac{\langle \mathbf{x}_i, \mathbf{x}_j \rangle}{\|\mathbf{x}_i\| \cdot \|\mathbf{x}_j\|}\right)$$

We design the angular kernel as a similarity measurement function

$$Sim(\boldsymbol{Q}_i, \boldsymbol{K}_j) = 1 - \frac{1}{\pi} \cdot \theta(\boldsymbol{Q}_i, \boldsymbol{K}_j) = \boldsymbol{\phi}(\boldsymbol{Q}_i) \cdot \boldsymbol{\phi}(\boldsymbol{K}_j)$$
 Decomposable

Example of 2D inputs:



If
$$\boldsymbol{Q}_i$$
 and \boldsymbol{K}_j are aligned, then $\theta \to 0$ and $Sim(\boldsymbol{Q}_i, \boldsymbol{K}_j) \to 1$

If Q_i and K_j are opposite, then $\theta \to \pi$ and $Sim(Q_i, K_j) \to 0$

Angle in a 2D input space

Similarity Measurement

Angular kernel from a spectral perspective

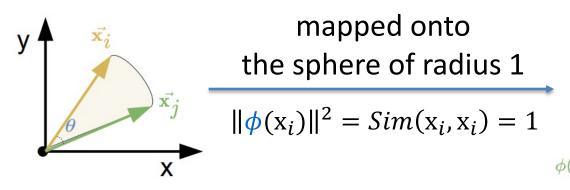
• Spectral angle between two vectors:

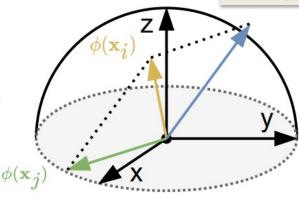
$$\theta(\mathbf{x}_i, \mathbf{x}_j) = \arccos\left(\frac{\langle \mathbf{x}_i, \mathbf{x}_j \rangle}{\|\mathbf{x}_i\| \cdot \|\mathbf{x}_j\|}\right)$$

We design the angular kernel as a similarity measurement function

$$Sim(\boldsymbol{Q}_i, \boldsymbol{K}_j) = 1 - \frac{1}{\pi} \cdot \theta(\boldsymbol{Q}_i, \boldsymbol{K}_j) = \boldsymbol{\phi}(\boldsymbol{Q}_i) \cdot \boldsymbol{\phi}(\boldsymbol{K}_j)$$
 Decomposable

Example of 2D inputs and 3D features:



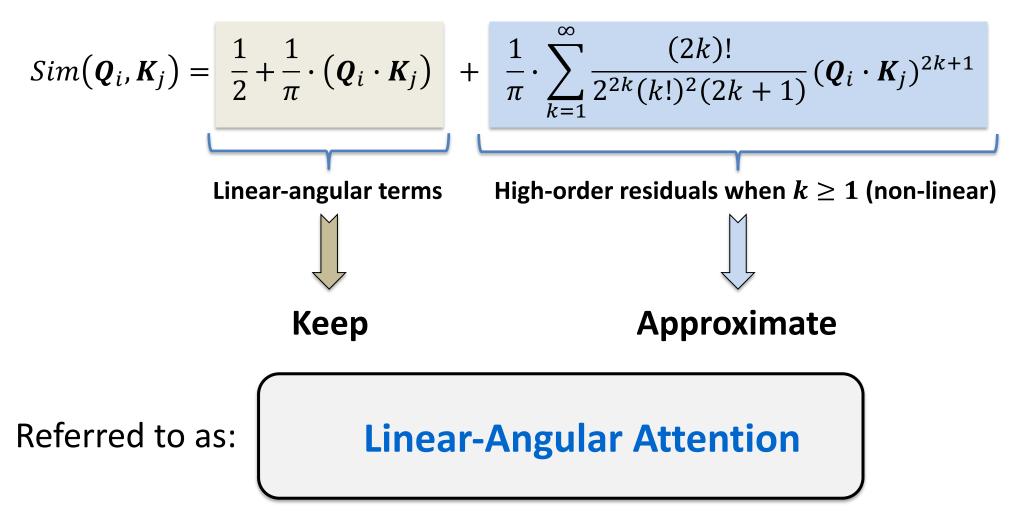


Angle in a 2D input space

Distance in a 3D feature space

 $\left\| \boldsymbol{\phi}(\mathbf{x}_{i}) - \boldsymbol{\phi}(\mathbf{x}_{j}) \right\|^{2}$ = $\frac{2}{\pi} \cdot \theta \left(\mathbf{x}_{i}, \mathbf{x}_{j} \right)$

- Angular kernel from a spectral perspective
 - Expansion of the angular kernel

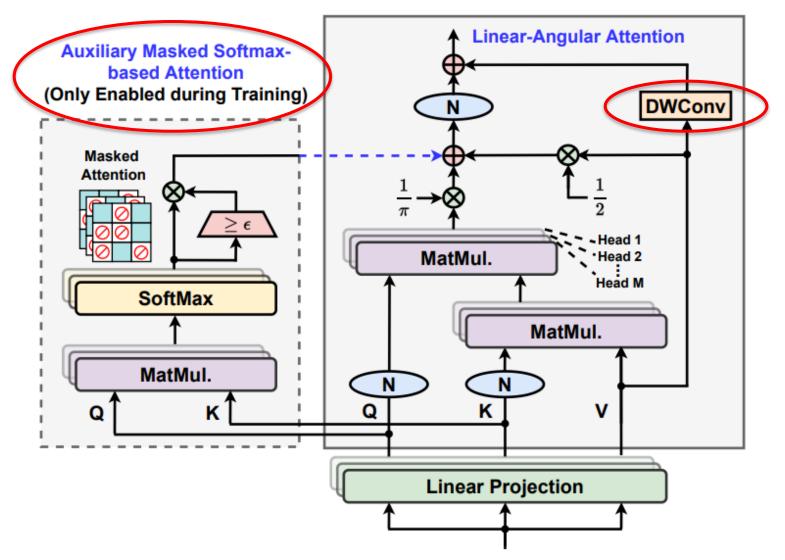


Castling-ViT: High-Order Residuals Approximation

- We leverage parameterized DNN modules to approximate it
 - A learnable depthwise convolution (DWConv)
 - To capture a strong inductive bias in neighboring tokens
 - An auxiliary masked softmax-based attention
 - To capture global similarity for nonadjacent tokens

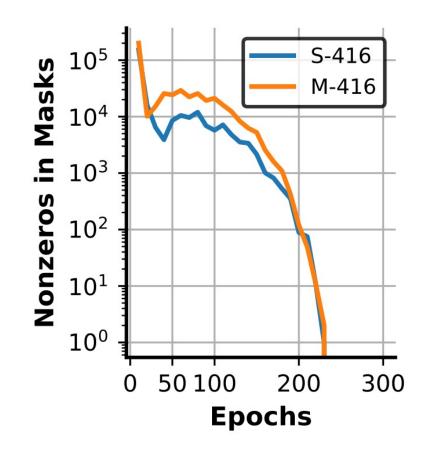
Castling-ViT: High-Order Residuals Approximation

- We leverage parameterized DNN modules to approximate it
 - A learnable depthwise convolution (DWConv)
 - An auxiliary masked softmax-based attention



Castling-ViT: High-Order Residuals Approximation

- Question: Softmax-based attention is costly?
 - It can be dropped during inference! → "Castling"

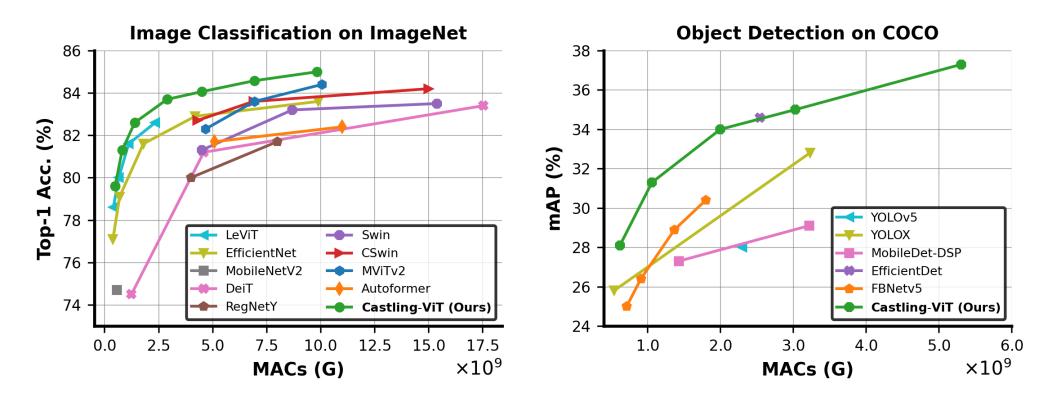


Visualizing the trajectories of nonzeros in auxiliary masks during training detection models on COCO.

Evaluation Setup

- Evaluation Setup
 - Three Tasks
 - Classification (CLS) / Detection (DET) / Segmentation (SEG)
 - Datasets
 - ImageNet / COCO / ADE20K
 - Models
 - LeViT, MViTv2, DeiT / PicoDet / Mask2former
- Benchmark Baselines
 - CLS
 - LeViT, MViTv2, DeiT, Swin, CSwin, PVT, etc
 - DET
 - FBNetV5, YOLOX, YOLOv5, MobileDet, EfficientDet
 - SEG
 - Mask2former w/ ViT backbone

Evaluation: Castling-ViT over SOTA Baselines



- Castling-ViT over SOTA baselines
 - 1.8% higher accuracy or 40% MACs reduction on classification tasks
 - 2.2 higher mAP on detection tasks

Evaluation: Castling-ViT over SOTA Baselines

Mask2former w/	MAE Pretrain	Params (M)	MACs (G)	mIoU	mAcc	рАсс
ViT-Base	N	118	229 (182)	34.54	46.36	75.84
Castling-ViT-Base	N	118	195 (147)	34.67	46.47	76.20
ViT-Base	Y	118	229 (182)	47.92	61.00	83.02
Castling-ViT-Base	Y	118	195 (147)	48.44	61.82	83.29

- Castling-ViT over SOTA baselines
 - 0.52% higher mIoU and 15% MACs reduction on segmentation tasks

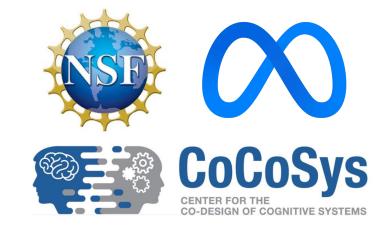
Summary

In this work, we

- Propose a framework called Castling-ViT, which trains both quadratic and linear attention while switching to having only linear attention at inference
- Develop a new linear-angular attention leveraging angular kernels to close the accuracy gap with softmax attention
- Use two parameterized modules to approximate the highorder residuals to compensate the accuracy drop

Acknowledge:

NSF RTML programs and the CoCoSys, one of the seven centers in JUMP 2.0 sponsored by DARPA



Project page:

