Leveraging Inter-rater Agreement for Classification in the Presence of Noisy Labels

TUE-AM-327
Maria Sofia Bucarelli¹, Lucas Cassano ${ }^{2}$, Federico Siciliano ${ }^{1}$, Amin Mantrach ${ }^{2}$, Fabrizio Silvestri ${ }^{1,3}$

${ }^{1}$ Sapienza University of Rome, ${ }^{2}$ Amazon, ${ }^{3}$ ISTI-CNR, Pisa, Italy

Background

- Classification datasets are obtained through a human labeling process.
- Annotators labels can be noisy
- Popular approaches for label combination are majority vote or soft labelling.
- No published results on leveraging IAA statistics for label noise estimation.
- Existing noise tolerant training methods rely on unknown quantities.

Contributions

- Methodology to estimate label noise distribution using IAA statistics.
- Leveraging the estimate to learn from noisy datasets.
- Providing generalization bounds based on IAA statistics.

Setting \& Assumptions

Instance independent noise : $\mathbb{P}\left(y_{a} \mid y, x\right)=\mathbb{P}\left(y_{-} a \mid y\right)$

1) All annotators have the same noise transition matrix T.

Noise Transition matrix :

$$
(T)_{i j}^{a}:=\mathbb{P}\left(y_{a}=j \mid y=i\right)
$$

2) $\quad T$ is symmetric and with diagonal elements larger than 0.5

Proposition

T is positive definite
3) Annotators are conditionally independent on the true label: $\mathbb{P}\left(y_{a}, y_{b} \mid y\right)=\mathbb{P}\left(y_{a} \mid y\right) \mathbb{P}\left(y_{b} \mid y\right)$
4) Classes distribution is known $v_{i}=\mathbb{P}(y=i), D:=\operatorname{diag}(v)$

Definition

The IAA matrix $M_{a b}$ between annotators a and b is: $\left(M_{a b}\right)_{i j}:=\mathbb{P}\left(y_{a}=i, y_{b}=j\right)$

Proposition

$M_{a b}$ can be written as a and b is: $M_{a b}=T_{a}^{T} D T_{b}$.

Estimation of the noise transition matrix

Lemma

If $D^{\frac{1}{2}}$ commutes with T we have that: $T=U \Lambda^{\frac{1}{2}} U^{T}$ where $U \Lambda U^{T}$ is an eigenvalue decomposition of $D^{-\frac{1}{2}} M D^{-\frac{1}{2}}$.

If the annotators have the same transition matrix, we can estimate M as follows:

$$
(\widehat{M})_{i j}=\frac{1}{H(H-1)} \sum_{\substack{a=1}}^{H} \sum_{\substack{b=1, b \neq a}}^{H} \sum_{k=1}^{n} \frac{1_{\left[y_{a, k}=i, y_{b, k}=j\right]}}{n}
$$

- Obtain the eignevalue decomposition of $D^{\frac{1}{2}} \widehat{M} D^{-\frac{1}{2}}=\widehat{U} \widehat{\Lambda} \widehat{U}^{T}$. $\longrightarrow \hat{T}=\widehat{U} \widehat{\Lambda}^{\frac{1}{2}} \widehat{U}^{T}$
- A more accurate estimate of T could be obtained as $\widehat{T}=\pi\left(\widehat{U} \widehat{\Lambda}^{\frac{1}{2}} \widehat{U}^{T}\right)$ where π is a projection operator to the set of doubly stochastic, positive definite and diagonally dominant matrices

Estimation of the noise transition matrix

Theorem

Let T be the noise transition matrix and \widehat{T} its estimate. With probability at least $1-\delta$:

$$
\|T-\widehat{T}\|_{2} \leq \frac{C(\sqrt{C}+1) \lambda_{\max }(D)}{\lambda_{\min (}(\hat{T})} \sqrt{\frac{1}{2 n} \ln \frac{2 C^{2}}{\delta}} \text { and. }\left\|T^{-1}-\hat{T}^{-1}\right\|_{2} \leq \frac{9 C(\sqrt{C}+1) \lambda_{\max }(D)}{\lambda_{\min }(\hat{T})^{2}} \sqrt{\frac{1}{2 n} \ln \frac{2 C^{2}}{\delta}}
$$

Experimental results

We performed experiments to validate the effectiveness of the method we propose for estimating T :

4 classes, 10 annotators

3 classes, 2 ann

Leveraging T for learning

We can calculate the posterior distributions as follows:

$$
\underbrace{\mathbb{P}\left(y_{i}=c \mid y_{1, i}, \ldots, y_{H, i}\right)}_{:=p_{c, i}} \propto \mathbb{P}\left(y_{i}=c\right) \prod_{h=1}^{H} \underbrace{\mathbb{P}\left(y_{i}=c \mid y_{1, i}, \ldots, y_{H, i}\right)}_{:=T_{c, y_{h, i}}} \quad \lim _{H \rightarrow \infty} p_{c, i}=1_{\left[y_{i}=c\right]} \text { a.s. }
$$

We can use the posterior distributions as soft-labels : $\ell\left(f\left(x_{i}\right), y_{1, i}, \ldots, y_{H, i}\right)=\ell\left(f\left(x_{i}\right), \bar{p}_{i}\right)$ where, $\bar{p}_{i}=\left[p_{1, i}, \ldots, p_{c, i}\right]^{T}$.

Or to weight the loss function : $\ell\left(f\left(x_{i}\right), y_{1, i}, \ldots, y_{H, i}\right)=\sum_{c=1}^{C} p_{c, i} \ell\left(f\left(x_{i}\right), e_{c}\right)$ with $e_{c} c$-th vector of the standard basis of \mathbb{R}^{C}.

Leveraging T for learning

We performed experiments to show how the estimated T can be leveraged to train classifiers in the presence of noise labels.

CIFAR10-N dataset. In this dataset there are no guarantees that the assumptions we made on T are satisfied, however, the method is still applicable with positive results.

Aggregation Method random	Pretrained	Not-Pretrained
majority vote	0.718 ± 0.035	0.579 ± 0.023
average	0.762 ± 0.017	0.590 ± 0.006
posteriors (ours)	$\mathbf{0 . 7 9 4} \pm \mathbf{0 . 0 0 5}$	$\mathbf{0 . 6 5 2} \pm \mathbf{0 . 0 1 4}$

Table: Test Accuracy on CIFAR10-N with Resnet34

Generalization Gap Bounds

We can leverage the estimation of T in the backward and forward losses.
Let $\ell(t, y)$ be a generic loss.

$$
\begin{gathered}
\ell(t):=\left[\ell\left(t, e_{1}\right), \ldots, \ell\left(t, e_{C}\right)\right] \\
l_{b}(t, y)=\left(T^{-1} \ell(t)\right)_{y} \\
l_{b}(t, y)=\ell\left(T^{T} t\right)_{y}
\end{gathered}
$$

We derived generalization gap bounds for he backward loss computed using \widehat{T}.

Theorem

Let ℓ_{b} be the backward loss for ℓ.
$R_{\ell, \mathcal{D}}(\hat{f})-\min _{f \in \mathcal{F}} R_{\ell, \mathcal{D}}(f) \leq\left[2 \mathrm{~L} \lambda_{\min }(\hat{T})^{2}+\frac{\mu \lambda_{\min }(D)}{\lambda_{\min }(\hat{T})^{2}} \sqrt{\frac{1}{n} \ln \left(\frac{4 C}{\delta}\right)}\right] \mathfrak{R}(\mathcal{F}) g(C)$,
with $1 g(c)=6 C^{2} \sqrt{C}+1$

Conclusions

We provided:

- A methodology to estimate label noise distribution using inter annotator agreement statistics
- A way to leverage estimated noise transition matrix to learn from noisy datasets
- Generalization bounds for backward loss based on IAA statistics. This bounds not dependent on true noise distribution (that is unkown), unlike previous works.

Thanks!

