THU-AM-222

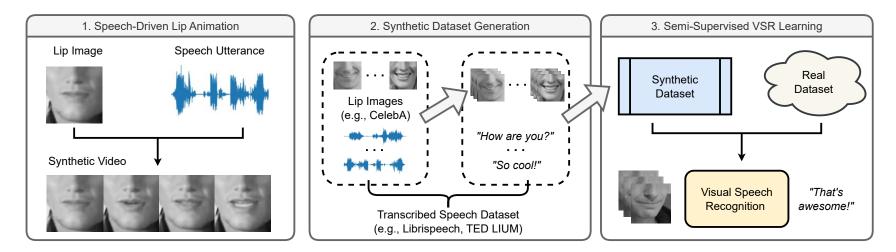
SynthVSR: Scaling Up Visual Speech Recognition With Synthetic Supervision

Xubo Liu^{1,2}, Egor Lakomkin², Konstantinos Vougioukas², Pingchuan Ma², Honglie Chen², Ruiming Xie², Morrie Doulaty², Niko Moritz², Jáchym Kolář², Stavros Petridis², Maja Pantic², Christian Fuegen²

¹University of Surrey ²Meta AI

1-Minute Summary

- Key challenge of visual speech recognition (VSR)
 - Lack of large-scale labeled audio-visual video data (e.g., LRS3 438 hours)
- SynthVSR: Proposed semi-supervised framework for VSR
 - Generate synthetic lip movement videos from speech and face datasets
 - SOTA WER 16.9% is achieved on LRS3, using 29x less data than previous methods



Related Work

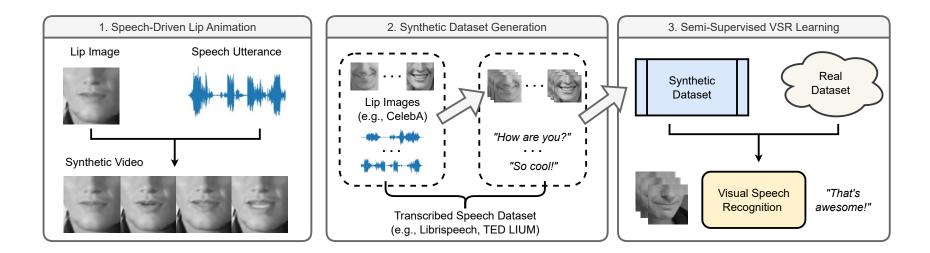
- Recently SOTA methods leverage increasingly large amount of audio-visual data
 - Supervised learning
 - Collect large-scale non-public transcribed audio-visual datasets e.g.,
 90,000 hours of data from Google (Serdyuk et al. 2022)
 - Semi-supervised learning
 - Use ASR to label audio-visual data (Ma et al. 2022):
 - Self-supervised learning AV-HuBERT (Shi et al. 2022)
 - Self-supervised learning on 1700 hours of unlabelled audio-visual data

Related Work

- Publicly available audio-visual dataset is limited in size
 - Limitations:
 - Includes speaker's frontal face
 - Resource-intensive to collect, not easy to scale up
 - Privacy and bias issues
 - Licensing for industry research (e.g., LRS2, LRW)

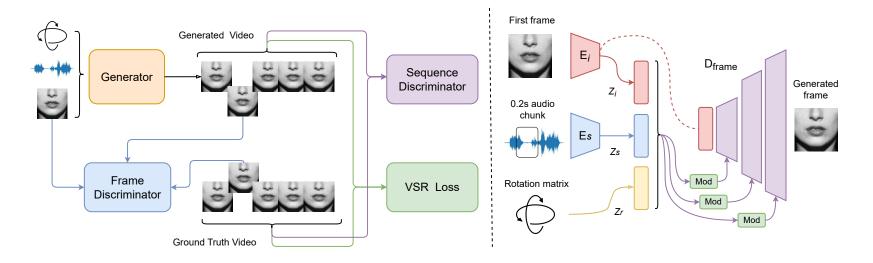
SynthVSR: Scaling Up VSR With Synthetic Supervision

- SynthVSR (Proposed semi-supervised VSR framework)
 - Speech-driven lip animation
 - Generate synthetic video clip from speech signal and face image
 - Practically infinite data diversity (identities, text labels) for scaling up VSR



(2)

Speech-Driven Lip Animation (VSR-Oriented)



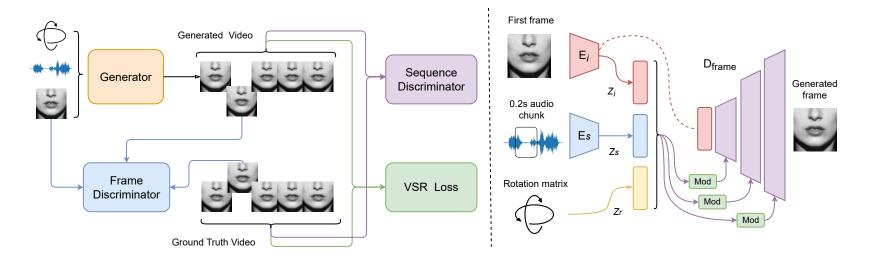
• Temporal GAN with two discriminators (frame & sequence)

$$\mathcal{L}_{Disc}^{img} = \mathbb{E}_{v}[\log D_{img}(S(v), v_{1})] + \mathbb{E}_{v,s}[\log(1 - D_{img}(S(G(s, v_{1})), v_{1})]$$
(1)

$$\mathcal{L}_{Disc}^{seq} = \mathbb{E}_{v}[\log D_{seq}(v)] + \mathbb{E}_{v,s}[\log(1 - D_{seq}(G(s, v_1)))]$$

* **v**: video, **v**₁: first frame, **S**(**v**): sampling function, **D**: Discriminator, **G**: Generator

Speech-Driven Lip Animation (VSR-Oriented)



- A VSR perceptual loss is proposed when labelled videos are available:
 - Visual embedding L1 loss + linguistic logits KL loss

$$\mathcal{L}_{VSR} = \lambda_{visual} \left\| z_f^r - z_f^s \right\|_1 + \lambda_{logits} \operatorname{KL}(\hat{y}^r, \hat{y}^s)$$
(3)

* **z**_f: VSR visual embedding, **y_head**: VSR predicted logits, **r**: for real data, **s**: for synthetic data

Speech-Driven Lip Animation (VSR-Oriented)



• Pixel-level reconstruction loss:

$$\mathcal{L}_{rec} = \left\| v - \hat{v} \right\|_1 \tag{4}$$

• Training objective:

* **v_head**: synthetic video

$$\mathcal{L}_{Animation} = \min_{\text{Gen. Disc.}} \max(\lambda_{disc}^{img} \mathcal{L}_{disc}^{img} + \lambda_{disc}^{seq} \mathcal{L}_{disc}^{seq}) + \lambda_{rec} \mathcal{L}_{rec} + \mathcal{L}_{VSR}$$
(5)

Scalable VSR Data Generation Pipeline

- Data generation pipeline:
 - Speech corpora (3,652 hours)
 - Librispeech, TED-LIUM, Common Voice
 - Face source:
 - CelebA (10k identities)
 - Generate one synthetic video per speech clip with one lip image
- Pros:
 - Easy to scale up
 - Unlimited data generation pipeline

Examples of synthetic lip movement videos

Experimental Setups

- Training data of speech-driven lip animation:
 - LRS3 + AVSpeech
- VSR model (Conformer-Transformer)
 - BASE (250M), LARGE (783M)
- Training and evaluation configuration is consistent with Ma et al. 2022
 - Training objective: CTC + CE
 - External LM is used for evaluation

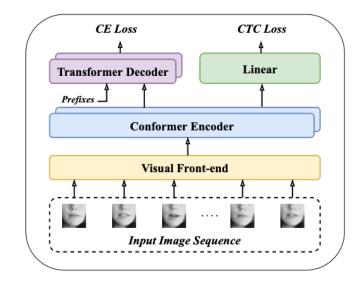


Figure 2. The VSR model used in this work based on a Conformer encoder, a 3D ResNet visual front-end and a combination of CTC and attention-based decoder.

Experimental Setups

• Benchmark : LRS3 - contains 408, 30, 0.9 hours of video clips from TED

talks in the pre-training, training-validation and test set, respectively.

- Evaluation with multiple labelled data setups:
 - Low-resource setup: 30 hours of LRS3
 - **Benchmark Setup**: 438 hours of LRS3
 - **High-resource setup**: 438 hours of LRS3 + 2630 hours of ASR

pseudo-labelled public audio-visual data (Ma et al. 2022)

Experimental Results – Low-Resource Setting

Method	Backbone	LM	Labeled data (hrs)	Unlabeled data (hrs)	Synthetic data (hrs)	WER (%)
Afouras et al. [3]	CNN	1	595 [‡]	334	-	59.8
Ren et al. [37]	Transformer	X	818^{\ddagger}	-	-	59.0
Afouras et al. [1]	Transformer	1	1,519 ^{†‡}	-	-	58.9
Xu et al. [52]	RNN	X	595 [‡]	-	-	57.8
Shillingford et al. [44]	RNN	1	3,886 [†]	-	-	55.1
Ma et al. [26]	Transformer	X	433	1,759	-	49.6*
Ma et al. [27]	Conformer	\checkmark	438	-	-	46.9
AV-HuBERT-BASE [43]	Transformer	X	30	1,759	-	46.1
SynthVSR	Conformer-BASE	X	30	-	-	104.0
		X	-	-	3,652	100.3
		X	30	-	3,652	44.7
		1	30	-	3,652	43.3

Table 1. Experimental results of low-resource labeled data setting on LRS3 (test). LM denotes whether or not a language model is used in the decoding. † Includes non-publicly available data. ‡ Includes datasets that are only permitted for the purpose of academic research. hrs is an abbreviation for hours. *Result taken from [43].

- Using only 30 hours of LRS3 labelled data achieves WER 43.3%, outperforming the former methods using hundreds or thousands hours of data
- We show the first successful attempt that achieves an acceptable VSR WER with only 30 hours of real data

Experimental Results – LRS3 Benchmark Setting

Method	Backbone	LM	Labeled data (hrs)	Unlabeled data (hrs)	Synthetic data (hrs)	WER (%)
AV-HuBERT-BASE [43]	Transformer	X	433	1,759	-	34.8
Makino et al. [30]	Transformer	X	31,000 [†]	-	-	33.6
Ma et al. [28]	Conformer	1	1,459 [‡]	-	-	31.5
Prajwal et al. [35]	Transformer	1	$2,676^{\dagger}$	-	-	30.7
AV-HuBERT-LARGE [43]	Transformer	X	433	1,759	-	28.6
AV-HuBERT-LARGE w. Self-Training [43]	Transformer	X	433	1,759	-	26.9
Auto-AVSR [25]	Conformer	1	3,448 [‡]	-	-	19.1
Serdyuk et al. [42]	Transformer	X	90,000 [†]	-	-	25.9
Serdyuk et al. [41]	Transformer	X	90,000 [†]	-	-	17.0
	Conformer-BASE	X	438	-	-	36.7
		X	438	-	3,652	28.4
SynthVSR		1	438	-	3,652	27.9
SynurvSK		X	3,068	-	-	21.2
		X	3,068	-	3,652	19.4
		1	3,068 - 3,652 1	18.7		
SynthVSR	Conformer-LARGE	X	3,068	-	3,652	18.2
Synul V SK		1	3,068	-	3,652	16.9

Table 2. Experimental results of LRS3 & high-resource labeled data setting on LRS3 (test). LM denotes whether or not a language model is used in the decoding. [†]Includes non-publicly available data. [‡]Includes datasets that are only permitted for the purpose of academic research. hrs is an abbreviation for hours.

Using only 438 hours of LRS3 labelled data achieves WER 27.9%, on-par with SOTA self-supervised method AV-HuBERT that uses external 1759 hours of unlabelled audio-visual data, but with fewer model parameters (250M vs 390M)

Experimental Results – High-Resource Setting

Method	Backbone	LM	Labeled data (hrs)	Unlabeled data (hrs)	Synthetic data (hrs)	WER (%)
AV-HuBERT-BASE [43]	Transformer	X	433	1,759	-	34.8
Makino et al. [30]	Transformer	X	$31,000^{\dagger}$	-	-	33.6
Ma et al. [28]	Conformer	1	1,459 [‡]	-	-	31.5
Prajwal et al. [35]	Transformer	1	$2,676^{\dagger}$	-	-	30.7
AV-HuBERT-LARGE [43]	Transformer	X	433	1,759	-	28.6
AV-HuBERT-LARGE w. Self-Training [43]	Transformer	X	433	1,759	-	26.9
Auto-AVSR [25]	Conformer	1	3,448 [‡]	-	-	19.1
Serdyuk et al. [42]	Transformer	X	90,000 [†]	-	-	25.9
Serdyuk et al. [41]	Transformer	X	90,000 [†]	-	-	17.0
	Conformer-BASE	X	438	-	-	36.7
		X	438	-	3,652	28.4
SynthVSR		1	438	-	3,652	27.9
SynurvSK		X	3,068	-	-	21.2
		X	3,068	-	3,652	19.4
		1	3,068	-	3,652	18.7
SynthVSR	Conformer-LARGE	X	3,068	-	3,652	18.2
SynurvSK		1	3,068	-	3,652	16.9

Table 2. Experimental results of LRS3 & high-resource labeled data setting on LRS3 (test). LM denotes whether or not a language model is used in the decoding. [†]Includes non-publicly available data. [‡]Includes datasets that are only permitted for the purpose of academic research. hrs is an abbreviation for hours.

 Using additional 2630 hours of ASR pseudo-labelled public audio-visual data, SOTA WER 16.9% is achieved on LRS3 with <u>publicly-available data only</u>, slightly surpassing the former SOTA method using 90k hours (29x more) of non-public labelled data.

Impact and Future Work

- We provide a scalable approach for VSR, reducing the need for large-scale annotated audio-visual data
- Potentially useful in low-resource language or new VSR applications (e.g., healthcare) where labeled data is scare
- Foster future work:
 - First benchmark with publicly-available synthetic data
 - How to better generate and leverage synthetic visual data?