GANmouflage: 3D Object Nondetection with Texture Fields

Rui Guo¹, Jasmine Collins², Oscar de Lima¹, Andrew Owens¹ University of Michigan¹, UC Berkeley²

TUE-PM-054

Motivation

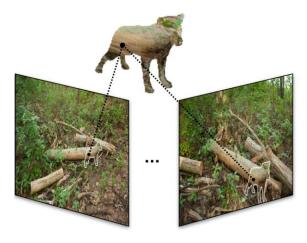
☐ Camouflages are everywhere, on the street, in the forest, under the sea...

Question: How to follow their design and generate textures as good as them?

Motivation

Challenges:

- Inconsistency from multiple views.
- \square No formal answer to the question, animals act in their own way.

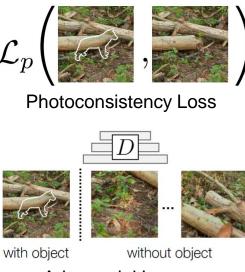


Color an object!

Make it hard to see in multiple views!

- Modern implicit representations of textures: Texture Fields.
- Learning to camouflage in a self-supervised way.

$$G_{ heta}(\mathbf{x}; \{\mathbf{I}_j\}, \{\mathbf{P}_j\}, \mathcal{S})$$
Query Input Projection Object Shape



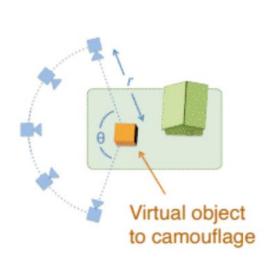
Adversarial Loss

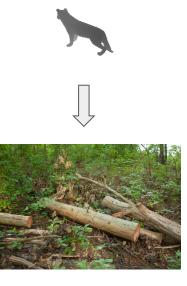
Related Work

Owens et al. propose to view cuboid surfaces as a graph and optimize camouflage textures as MRF.

Multi-view Camouflage

- Multiple input views captured around a virtual object.
- Generate camouflage textures for the shape based on the scene and location.

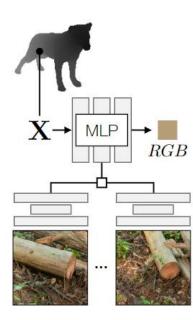




Texture Field: Multi-Layer Perceptron dependent on scene encodings.

$$\mathbf{c}_i = T(\gamma(\mathbf{x}_i); \{\mathbf{z}_i^{(j)}\}, \{\mathbf{v}_i^{(j)}\}, \{\mathbf{n}_i^{(j)}\})$$

Color for poin Query point i



Texture Field: Multi-Layer Perceptron dependent on scene encodings.

$$\mathbf{c}_i = T(\gamma(\mathbf{x}_i); \{\mathbf{z}_i^{(j)}\}, \{\mathbf{v}_i^{(j)}\}, \{\mathbf{n}_i^{(j)}\})$$

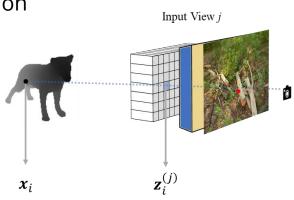
Pixel-aligned image representation

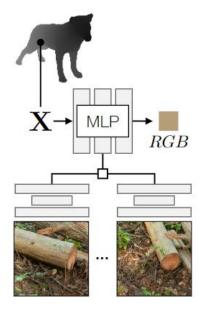
■ Image coordinate on input view j.

$$\mathbf{u}_i^{(j)} = \pi^{(j)}(\mathbf{x}_i)$$

■ Bilinear interpolated image features

$$\mathbf{z}_i^{(j)} = \mathbf{F}^{(j)}(\mathbf{u}_i^{(j)})$$





Texture Field: Multi-Layer Perceptron dependent on scene encodings.

$$\mathbf{c}_i = T(\gamma(\mathbf{x}_i); \{\mathbf{z}_i^{(j)}\}, \{\mathbf{v}_i^{(j)}\}, \{\mathbf{n}_i^{(j)}\})$$

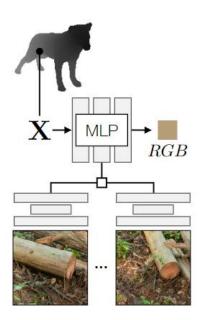
Perspective encoding

- Conveys the local geometry of the object surface and the multi-view setting
- \blacksquare Viewing direction from input view j

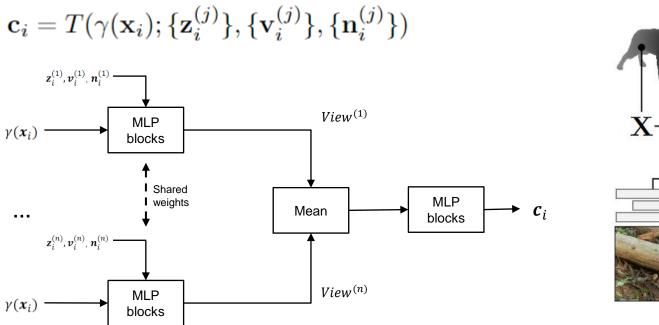
$$\mathbf{v}_{i}^{(j)} = \frac{\mathbf{K}_{j}^{-1}\mathbf{u}_{i}^{(j)}}{\|\mathbf{K}_{j}^{-1}\mathbf{u}_{i}^{(j)}\|_{2}}$$

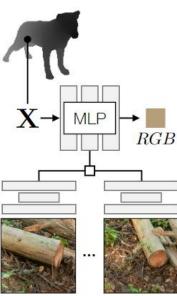
 \blacksquare Surface normals in input view j

$$\mathbf{n}_i^{(j)} = \mathbf{R}_j \mathbf{n}_i$$



Texture Field: Multi-Layer Perceptron dependent on scene encodings.





Learning to Camouflage

☐ Learn how to camouflage through virtually inserting camouflaged objects.

Learning to Camouflage

□ Photoconsistency Loss:

$$\mathcal{L}_{photo} = \sum_{j \in J} \mathcal{L}_{P}(\hat{\mathbf{I}}_{j}, \mathbf{I}_{j}) = \sum_{j \in J, k \in L} \frac{1}{N_{k}} \|\phi_{k}(\hat{\mathbf{I}}_{j}) - \phi_{k}(\mathbf{I}_{j})\|_{1}$$

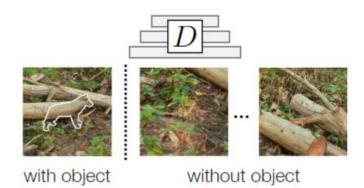
Adversarial Loss :

$$\mathcal{L}_D = -\mathbb{E}_y[\log D(y)] - \mathbb{E}_{\hat{y}}[\log(1 - D(\hat{y}))]$$

$$\mathcal{L}_{adv} = -\mathbb{E}_{\hat{y}}[\log D(\hat{y})]$$

□ Self-supervised camouflage loss

$$\mathcal{L}_G = \mathcal{L}_{photo} + \lambda_{adv} \mathcal{L}_{adv}$$

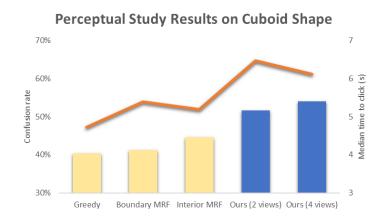


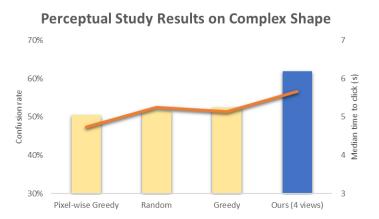
Experiments

- Evaluate our method on 36 scenarios from Owens *et al.*:
 - Render objects after camouflage at the predefined place.
 - ☐ Test our method with 2 view input or 4 view input.
 - Test on cuboid and animal shapes.
- Baseline
 - Iterative greedy projection
 - MRF based methods from Owens et al.
 - ☐ Image inpainting + projection

Result

- Evaluation based on perceptual study.
 - Participants are required to click on the location of camouflaged objects.
 - □ Confusion rate and click time are recorded for each trial.





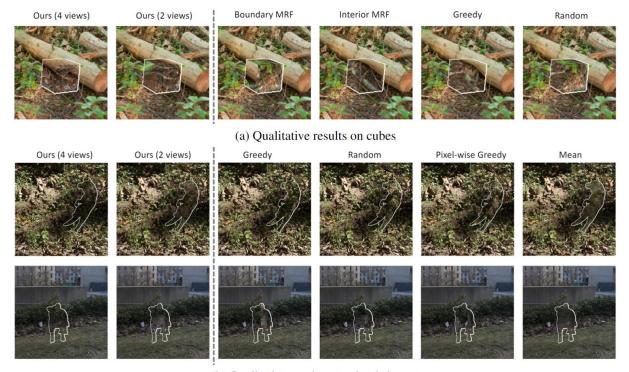
Results

- Automated metrics
 - □ LPIPS
 - □ SIFID
- Compared with image inpainting pipeline
- Ablation Study

Model	LPIPS↓	SIFID↓
Boundary MRF [34]	0.1228	0.0867
Interior MRF [34]	0.1185	0.0782
DeepFill v2 [58] + Projection [34]	0.1469	0.1245
LaMa [51] + Projection [34]	0.1263	0.1006
LDM [40] + Projection [34]	0.1305	0.0976
$-\overline{\mathrm{No}}ar{\mathcal{L}}_{adv}$	0.1064	0.0720
No \mathcal{L}_{photo} on input views	0.1131	0.0856
With pixelNeRF encoder [57]	0.1047	0.0712
Ours (2 views)	0.1079	0.0754
Ours (4 views)	0.1034	0.0714

Table 3. **Evaluation with automated metrics.** We compare our method to other approaches, and perform ablations.

Results



(b) Qualitative results on animal shapes

Virtual Tours in the scene

Conclusion

- We propose a method using Texture Fields to generate camouflage texture for objects.
- Our method has more flexibility on input shapes.
- We propose a self-supervised way to train the texturing model.

Reference

- [1] Andrew Owens, Connelly Barnes, Alex Flint, Hanumant Singh, and William Freeman. Camouflaging an object from many viewpoints. In CVPR, 2014.
- [2] Craig Reynolds. Interactive evolution of camouflage. In Artificial life, 2011.
- [3] Michael Oechsle, Lars Mescheder, Michael Niemeyer, Thilo Strauss, and Andreas Geiger. Texture fields: Learning texture representations in function space. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pages 4531–4540, 2019.
- [4] Silvia Zuffi, Angjoo Kanazawa, David Jacobs, and Michael J. Black. 3D menagerie: Modeling the 3D shape and pose of animals. *In IEEE Conf. on Computer Vision and Pattern Recognition (CVPR)*, July 2017.
- [5] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unreasonable effectiveness of deep features as a perceptual metric. In CVPR, 2018.
- [6] Tamar Rott Shaham, Tali Dekel, and Tomer Michaeli. Singan: Learning a generative model from a single natural image. In *Proceedings of the IEEE International Conference on Computer Vision*, pages 4570–4580, 2019.

Image credit:

https://scswraps.com/utility-box-brick-camouflage/ https://www.mystart.com/blog/the-coolest-camouflage-techniques-used-by-animals https://www.youtube.com/watch?v=JSq8nghQZqA

Thank you!