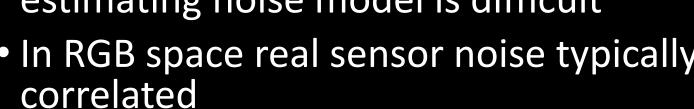
# Patch-Craft Self-Supervised Training for Correlated Image Denoising



Gregory Vaksman and Michael Elad

**TUE-PM-159** 






## Patch-Craft Training – Problem Definition

### Self-supervised training for image denoising

- Noise can have non-Gaussian distribution
- Noise can exhibit short-range spatial and cross-channel correlations
- Capturing corrupted images is relatively straightforward
- Obtaining ground-truth or estimating noise model is difficult
- In RGB space real sensor noise typically







# Patch-Craft Training – Sample Results





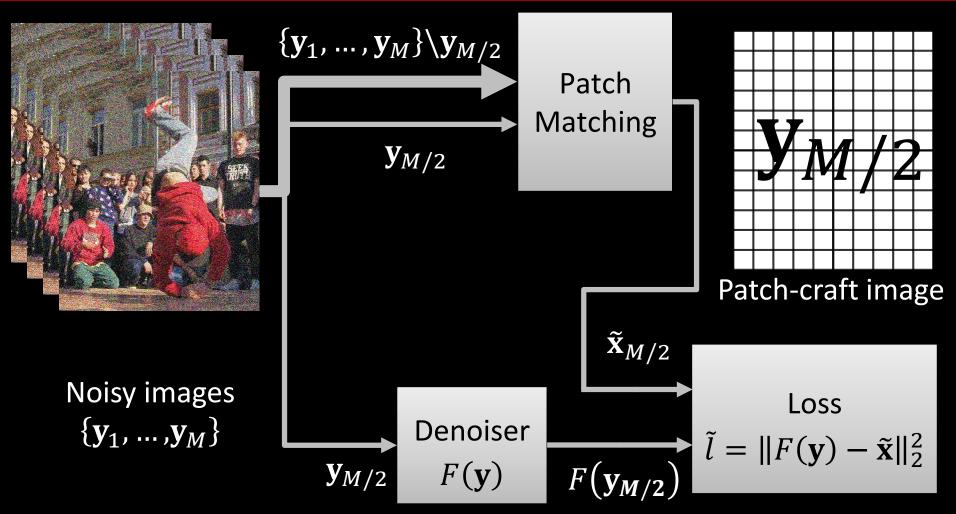


Clean Noisy N2N, 24.27dB








R2R, 25.26dB

BM3D-O, 24.22dB

PC-DnCNN (ours), 28.03 dB

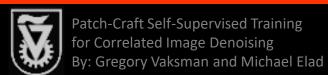


# Patch-Craft Training — Overview







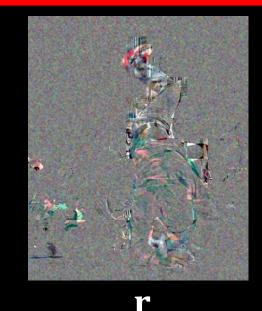

#### Lemma

#### Lemma:

If **w** is statistically independent of **x** and **z**, and admits a zero mean  $\mathbb{E}[\mathbf{w}] = \mathbf{0}$ , then  $\mathbb{E}[\nabla \tilde{l}] = \mathbb{E}[\nabla || F(\mathbf{y}) - \tilde{\mathbf{x}}||_2^2] = \nabla(\mathbb{E}|| F(\mathbf{y}) - \mathbf{x}||_2^2)$ 

#### **Conclusion:**

Training with the loss  $\tilde{l}$  is equivalent to SGD with clean targets  ${f x}$ 





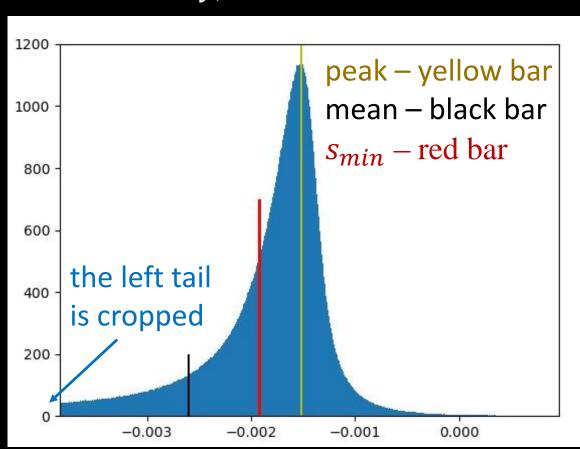

## Correlation Reduction – Definitions







y


$$s_{y,r} = \sum_{i,j} (y_{i,j} - \bar{y})(r_{i,j} - \bar{r})$$
 empirical covariance between  $\mathbf{y}$  and  $\mathbf{r}$ 

We are going to use the histogram of  $s_{y,r}$ 

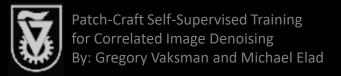



#### Correlation Reduction

#### $s_{y,r}$ histogram



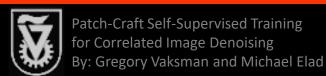
#### Algorithm:


- $\circ$  Exclude from the training set all image pairs for which  $s_{yr} < s_{min}$  cut the left tail
- The mean of the resulting histogram coincides with its peak





## Results – Correlated Gaussian Noise


| σ       | k | Noisy | B2U   | N2N   | R2R   | BM3D-O | PC-DnCNN<br>(ours) |
|---------|---|-------|-------|-------|-------|--------|--------------------|
| 10      | 3 | 28.13 | 23.85 | 28.85 | 32.50 | 33.56  | 35.32              |
|         | 4 | 28.13 | 23.45 | 28.67 | 31.21 | 32.30  | 34.79              |
| 15      | 3 | 24.61 | 24.44 | 25.43 | 29.59 | 31.11  | 33.16              |
|         | 4 | 24.61 | 22.26 | 25.26 | 28.26 | 29.79  | 32.57              |
| 20      | 3 | 22.11 | 7.74  | 23.02 | 27.57 | 29.49  | 31.63              |
|         | 4 | 22.11 | 22.33 | 22.91 | 25.93 | 28.15  | 30.97              |
| Average |   | 24.95 | 20.68 | 25.69 | 29.18 | 30.73  | 33.07              |





# Results – Real-World Image Noise

| ISO     | Noisy | B2U   | N2N   | R2R   | BM3D-O | PC-DnCNN<br>(ours) |
|---------|-------|-------|-------|-------|--------|--------------------|
| 1600    | 37.67 | 36.88 | 37.71 | 39.58 | 41.12  | 41.33              |
| 3200    | 35.03 | 4.94  | 35.10 | 37.18 | 38.99  | 39.64              |
| 6400    | 32.10 | 4.98  | 32.19 | 34.67 | 36.57  | 37.32              |
| 12800   | 29.25 | 23.79 | 29.33 | 31.71 | 34.30  | 35.15              |
| 25600   | 25.77 | 20.11 | 25.86 | 28.26 | 31.35  | 32.38              |
| Average | 31.96 | 18.14 | 32.04 | 34.28 | 36.47  | 37.16              |





## Results – Correlated Gaussian Noise

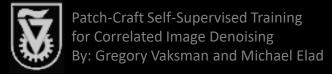






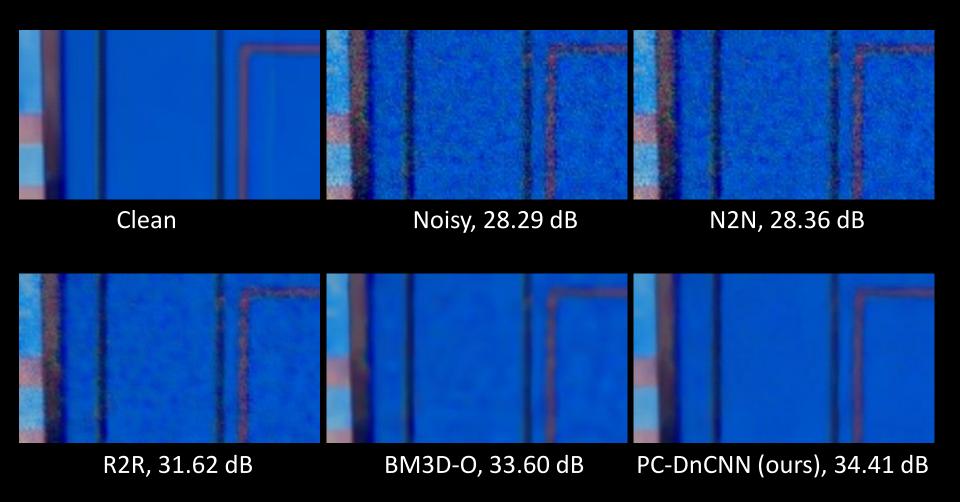
Clean Noisy N2N, 24.27dB

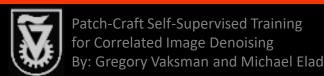







R2R, 25.26dB

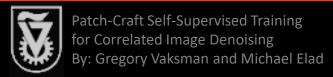

BM3D-O, 24.22dB


PC-DnCNN (ours), 28.03 dB





## Results – Real-World Noise








# Patch-Craft Denoising – Summary

- Novel self-supervised framework for correlated image denoising
- Relies on availability of short video sequences
- Applies patch matching for building patch-craft images
- Excludes images with high correlation from the training set
- Achieves an outstanding denoising performance compared with the recent state-of-the-art self-supervised methods



