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Background

Figure: Video object segmentation deals with tracking the location of objects over a video sequence.
The goal is to generate accurate and consistent pixel-level object masks across the frames.

• This task serves as a foundation for many video understanding tasks such as
action recognition, video editing, and augmented reality.
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Background - Limitations

Figure: The STM memory model scales poorly for longer video sequences and introduces problems,
such as drift, where the model can catastrophically degrade in performance over time.

• The current state-of-the-art relies on space-time-memory networks (STM),
which relies on densely matching features from previous frames.
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Method - Modified Architecture
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Figure: We restrict our attention to a finite STM network, whereby only the most recent and first frame
features are stored in memory.

• To enable real-time performance, we use a much smaller MobileNet backbone.
• To encourage temporally consistent features, we distill knowledge a
pre-trained infinite memory teacher.
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Method - Knowledge Distillation
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Figure: We jointly introduce boundary aware sampling to improve model convergence, and a natural
unification with supervised-contrastive learning for varying student-teacher capacity gaps.
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Method - Knowledge Distillation

The proposed distillation loss is given as follows.

Lrepr =
1

| Cs |

(
log2 ∥Cs∥2 − log2 ∥Cs ⊙ Ct∥2

)
(1)

where Cs,Ct ∈ IRHW×HW capture the relationship between all pairs of pixels in the
student and teacher feature space respectively.

Boundary-aware sampling

Sampling the boundary pixels not only improves model convergence and addresses
observed limitations of SVOS models, but also significantly reduces the memory
constraints in constructing these matrices.
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Method - Knowledge Distillation

By introducing known relationships between the pixel-wise features, we can provide
a natural scheme to interpolate between knowledge distillation and supervised
constrastive learning.

Cty = ωCt + (1− ω)YYT (2)

In the case where ω = 0, we arrive at a familiar supervised constrastive setting.

Lrepr → LSupCon = − 1

| Cs |
log2

∑
i

∑
j∈Pi

sim(Zi,Zj)∑
k sim(Zi,Zk)

(3)
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Experiments - DAVIS16

Method CC J&F J F FPS

STM† 7 89.3 88.7 89.9 6.3
MiVOS†∗ 7 91.0 89.7 92.4 16.9
STCN†∗ 7 91.7 90.4 93.0 26.9
BATMAN 7 92.5 90.7 94.2 -
XMem†∗ 7 92.0 90.7 93.2 29.6

SwiftNet† 3 90.4 90.5 90.3 25.0
RDE-VOS†∗ 3 91.6 90.0 93.2 35.0

MobileVOS
ResNet18†∗ 3 91.4 90.3 92.6 100.1
MobileNetV2† 3 90.5 89.5 91.5 81.8

↰

wo/ ASPP† 3 90.1 89.0 91.1 86.0
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Experiments - DAVIS17

Method CC J&F J F FPS

STM† 7 81.8 79.2 84.3 10.2
STCN†∗ 7 85.3 82.0 88.6 20.2
BATMAN 7 86.2 83.2 89.4 -
XMem†∗ 7 87.7 84.0 91.4 22.6

SwiftNet† 3 81.1 78.3 83.9 <25.0
RDE-VOS†∗ 3 86.1 82.1 90.0 27.0

MobileVOS
ResNet18†∗ 3 85.0 81.7 88.3 90.6
MobileNetV2† 3 82.2 78.7 85.7 79.1

↰

wo/ ASPP† 3 81.8 78.3 85.3 81.3
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Experiments - Mobile Performance

Method Params(M)
FPS

NVIDIA A40
FPS

NVIDIA 1080Ti

short long (10×) short long (10×)

STM 38.9 8.9 4.3 6.8 7

GSFM 67.0 18.4 4.2 7.6 7

STCN 54.4 37.4 8.3 18.1 7

RDE-VOS 64.0 32.0 34.2 14.4 14.1
XMem 62.2 38.6 39.9 12.6 12.7

MobileVOS
ResNet18 8.1 144.7 145.4 76.0 76.3
MobileNetV2 2.5 99.9 99.1 61.6 60.6

↰

wo/ ASPP 1.9 105.1 103.4 66.8 67.4
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Experiments - Mobile Performance
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Conclusion

• Shown that finite memory STM networks are an efficient class of models for
mobile device inference.

• Provide a natural unification of supervised contrastive learning and KD.
• Introduce boundary-aware sampling as a task specific trick for improving model
convergence and memory constraints for SVOS distillation.
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