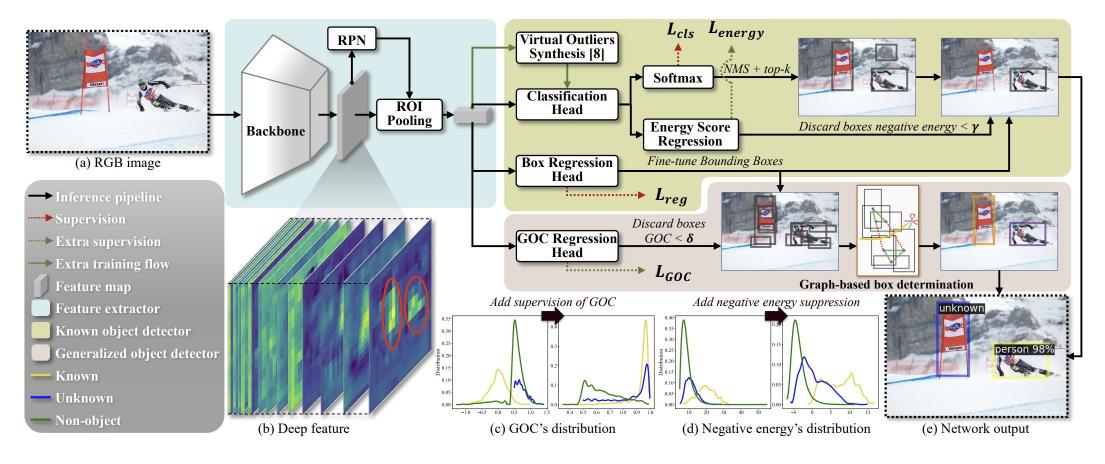


Unknown Sniffer for Object Detection: Don't Turn a Blind Eye to Unknown Objects

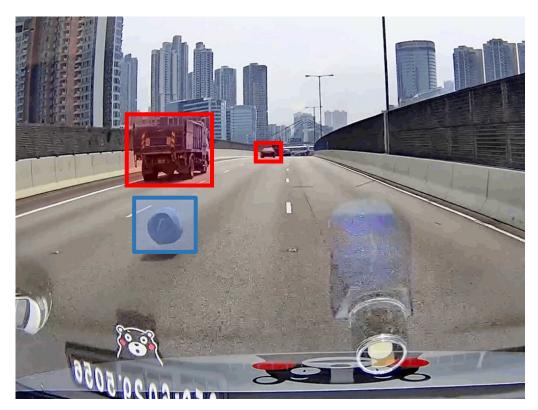
Wenteng Liang, Feng Xue, Yihao Liu, Guofeng Zhong, Anlong Ming*

Beijing University of Posts and Telecommunications

Overview



Breaking through the closed-world setting

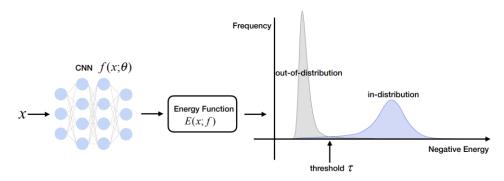


- Known object
- Unknown object

- In a **closed-world** with a limited number of categories, deep learning has achieved great success in detection tasks.
- However, models based on the idealized assumption have been unable to meet **complex real-world** needs.

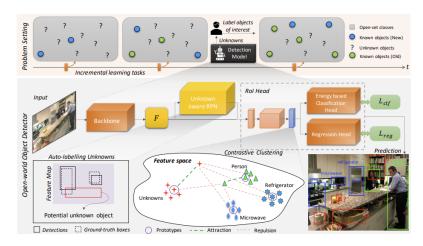
Previous Methods

■ Open-set classification & detection

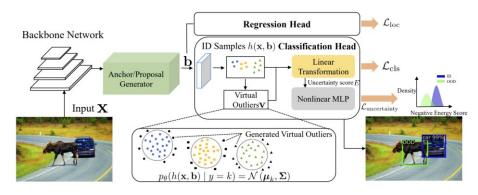


[Energy. NIPS 2020]

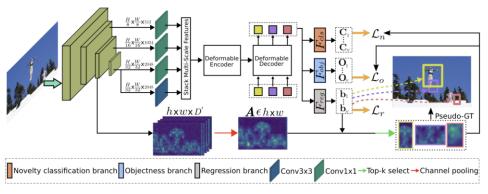
■ Open-world object detection



[ORE. CVPR 2021]



[VOS. ICLR 2022]



Previous Methods

■ Open-set classification & detection

- Deal with unknown samples encountered in classification or detection tasks.
- Focus on distinguishing unknown objects from known ones.
- © Suppress both unknowns and non-objects in training, leading to a low recall of unknowns.

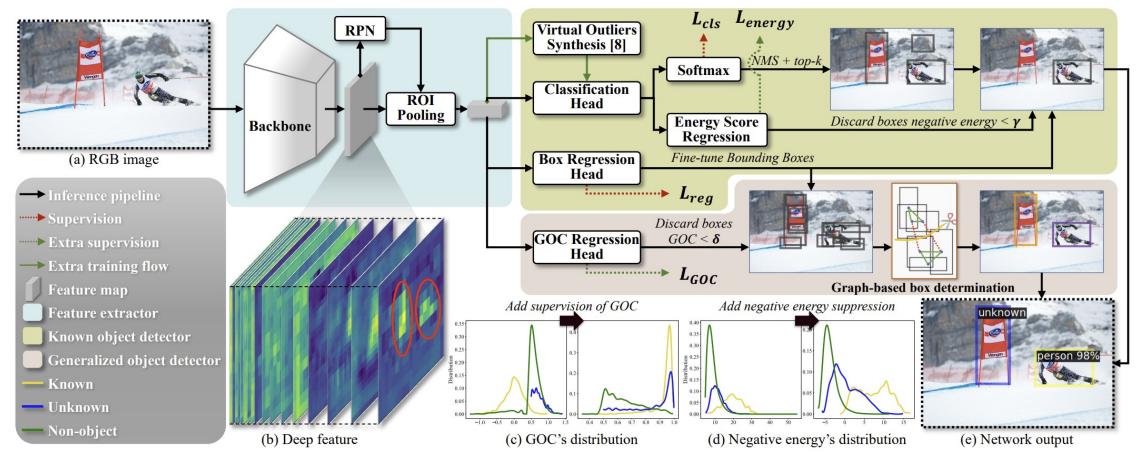
[Energy. NIPS 2020]

VOS. ICLR 2022]

■ Open-world object detection

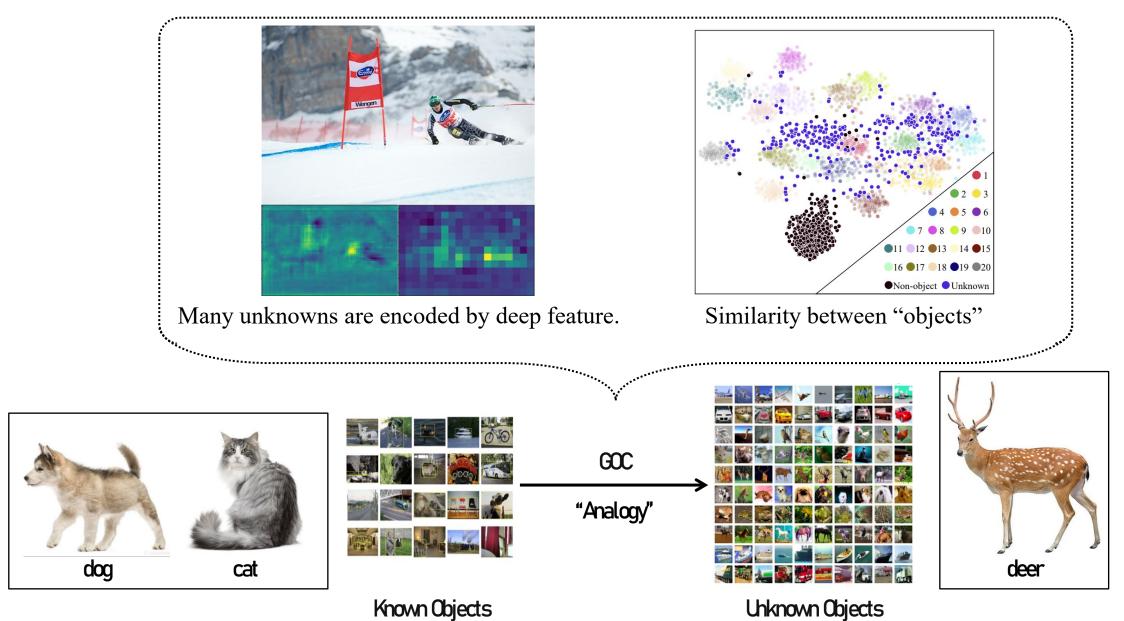
- Detect both objects and support incremental learning.
- Train known and unknown object classifiers with pseudo-unknown samples.
- Pseudo-unknown samples do not represent unknowns thus limiting the ability to transfer knowledge from known to unknown.

Overview



- Generalized Object Confidence (GOC)
- Negative Energy Suppression
- Graph-Based Box Determination

Generalized Object Confidence



Generalized Object Confidence

• Complete-object bounding boxes should have high GOC:

$$L_{pos} = \frac{1}{K} \sum_{k \in [1,K]} \frac{1}{|B_n^{k,\mathbf{c}}|} \sum_{b_i \in \mathbf{B}_n^{k,\mathbf{c}}} (\Phi(f_i) - 1)^2$$

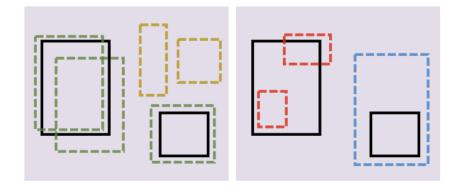
• More complete boxes have higher GOC:

$$L_{con} = \frac{1}{K_{k \in [1,K]}} \left[\frac{2}{|\mathbf{B}_{n}^{k,\mathbf{c}}|} \right] \sum_{b_{i},b_{j} \in \mathbf{B}_{n}^{k,\mathbf{c}}} \max \left(0, \frac{\Phi(f_{i}) - \Phi(f_{j})}{\alpha} + \zeta\right)$$

Partial-object or oversized boxes should have low GOC:

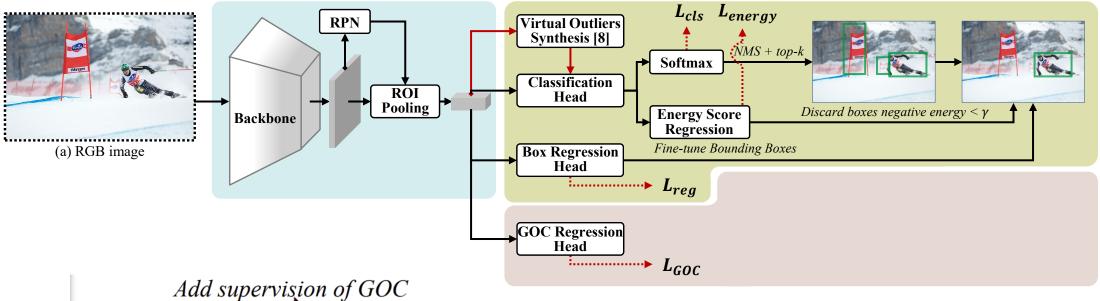
$$L_{neg} = \frac{1}{K} \sum_{k \in [1,K]} \frac{1}{|B_n^{k,\mathbf{po}}|} \sum_{b_i \in \mathbf{B}_n^{k,\mathbf{po}}} \max(0,\Phi(f_i) - \delta)$$

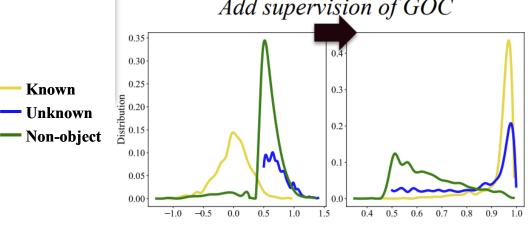
Total GOC loss
$$L_{GOC} = L_{neg} + L_{pos} + L_{con}$$



- Ground-truth Boxes
- Complete-object Boxes
- Partial-object Boxes
- Oversized Boxes
- Non-object Boxes (Excluded for training)

Generalized Object Confidence





- Without L_{GOC} , unknown boxes have the same output as non-object.
- With L_{GOC} , unknown boxes have the same output as known objects.

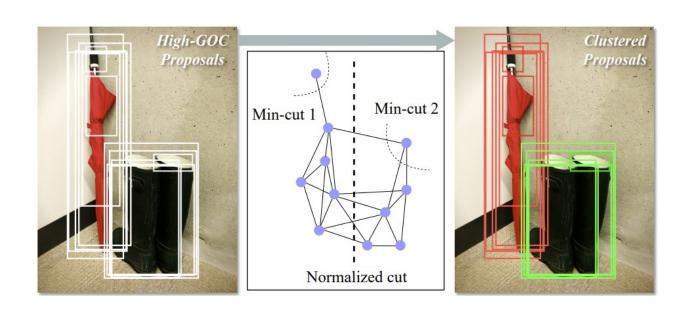
GOC's distribution

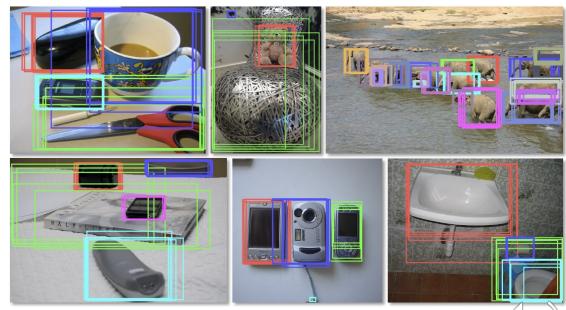
Graph-based Top-scoring Box Determination

The top-scoring box determination

Graph partitioning

Node represents a box
Edge represents the IoU



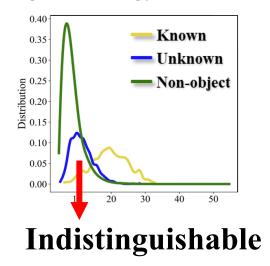


Negative Energy Suppression for Non-object

We follow the energy value of VOS to distinguish unknown objects from known ones:

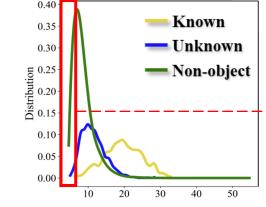
$$E(b_i) = -\log \sum_{c \in [1,C]} \mathbf{w}_c \cdot \exp^{\mathbf{f}_c}$$

Negative energy's distribution



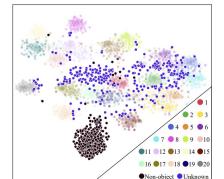
How to separate non-object from objects without the aid of non-object annotations?

Negative Energy Suppression for Non-object



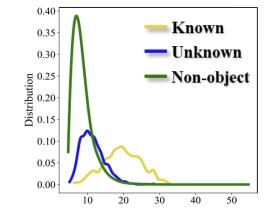
• Suppression loss is applied to the top-T proposals with the lowest negative energy scores.

$$L_{suppression} = \frac{1}{T} \sum_{i \in [1,T]} \max(0, -E(b_i))$$

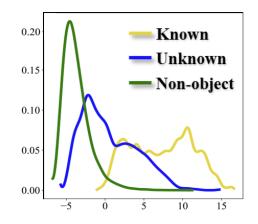


T-SNE

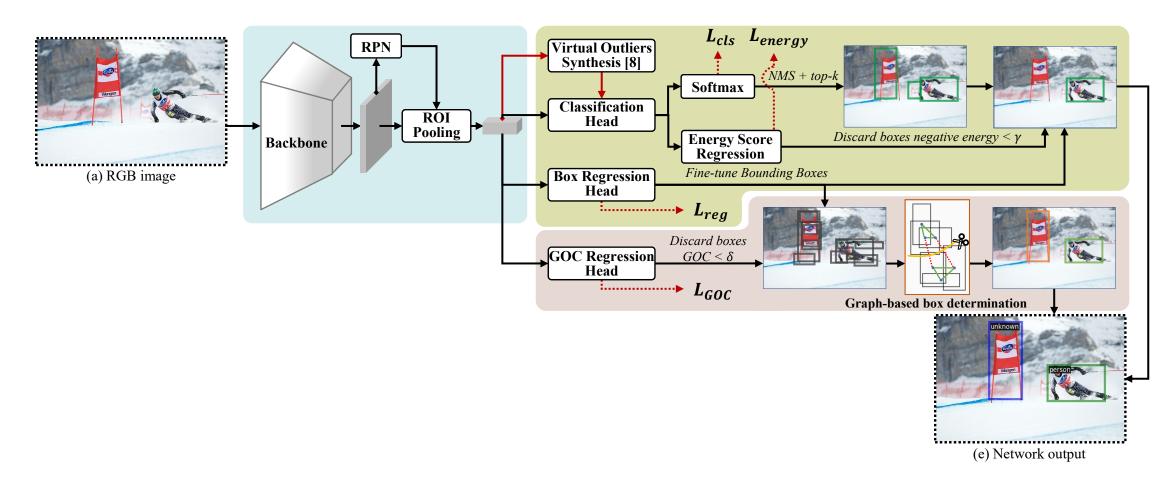
• Non-objects also have feature similarities, so suppression will be transmitted.



Indirectly widening the gap



Negative Energy Suppression for Non-object



The overall energy loss consists of our proposed $L_{suppression}$ and $L_{uncertainty}$ defined by VOS:

$$L_{energy} = L_{suppression} + L_{uncertainty}$$

Unknown Object Detection Benchmark

• Training data:

Pascal VOC dataset that contains 20 categories

• Testing data:

Datasets	Images	Known	Unknown	
VOC-Pretest	200	5.09	0	
VOC-Test	4952	3.02	0	
COCO-OOD♣	504	0	3.28	
COCO-Mixed.	897	2.96	2.82	

• denotes the augmented datasets

Annotated samples in COCO-OOD and COCO-Mix.

Unknown Object Detection Benchmark

Evaluation Metrics

For known objects:

• mAP

For unknown objects:

- Unknown Average Precision (U-AP)
- Unknown F1-Score(U-F1)
- Unknown Recall Rate (U-REC)
- Precision Rate of Unknown (U-PRE)

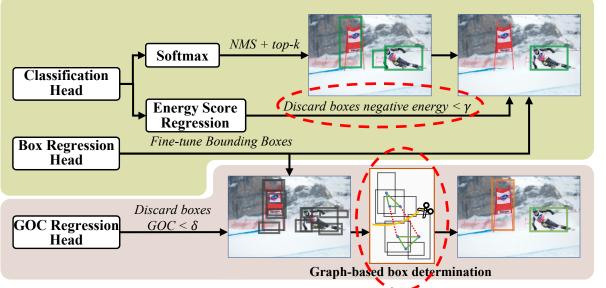
For mixed data:

Absolute Open-Set Error (A-OSE)

Pretest mode in the Benchmark

Datasets	Images	Known	Unknown
VOC-Pretest	200	5.09	0

• Select 200 images in the training set that do not contain any potential unknown objects.



- 1. The threshold γ is set by making 95% of predicted proposals have a negative energy score greater than it.
- 2. The threshold of NCut is determined when the AP of known objects is the largest.

Experiment

Groups	Methods	VOC-Test	COCO-OOD			COCO-Mix						
Groups		mAP	U-AP	U-F1	U-PRE	U-REC	mAP	U-AP	U-F1	U-PRE	U-REC	AOSE
	MSP [15]	0.470	0.213	0.314	0.279	0.359	0.364	0.055	0.169	0.190	0.153	588
1	Mahalanobis [5]	0.447	0.129	0.271	0.309	0.241	0.351	0.051	0.149	0.207	0.116	604
	Energy score [23]	0.474	0.213	0.308	0.260	0.377	0.364	0.048	0.169	0.167	0.171	470
2	OW-DETR [11]	0.420	0.033	0.056	0.030	0.380	0.414	0.007	0.025	0.014	0.161	569
	ORE [17]	0.243	0.214	0.255	0.153	0.782	0.213	<u>0.140</u>	<u>0.175</u>	0.103	0.592	485
3	VOS ¹ [8]	0.485	0.135	0.196	0.342	0.137	0.377	0.040	0.101	0.262	0.062	640
	VOS ² [8]	0.469	0.205	<u>0.317</u>	0.291	0.348	0.364	0.051	0.172	0.184	0.163	<u>409</u>
4	Ours	0.464	0.454	0.479	0.433	0.535	0.359	0.150	0.287	0.222	0.409	398

Table 2. Comparisons with the detector using open-set classification ①, open-world object detection ②, and open-set detection ③ methods. VOS¹ denotes the model with the threshold given by the official repository¹, which is calculated on the BDD100K dataset [39]. And VOS² utilizes the threshold computed on the COCO-OOD dataset by using the official code². Best results are in bold, second best are underlined.

Experiment

Row	GOC	NES	GBD	U-AP	U-F1	U-PRE	U-REC
1	×	×	×	0.066	0.050	0.026	0.808
2	×	×	\checkmark	0.250	0.434	0.395	0.481
3	×	\checkmark	\times	0.442	0.054	0.028	0.861
4	✓	×	×	0.479	0.323	0.215	0.646
5	×	√	√	0.409	0.467	0.437	0.502
6	✓	X	\checkmark	0.455	0.454	0.399	<u>0.528</u>
7	✓	\checkmark	\checkmark	0.454	0.479	0.433	0.535

Table 3. **Ablation studies on COCO-OOD**. GOC, NES and GBD refer to 'generalized object confidence', 'negative energy suppression' and 'graph-based box determination', respectively. When 'GBD' is \times , we use NMS and top-k as post-processing with the same thresholds with the known detector for a fair comparison.

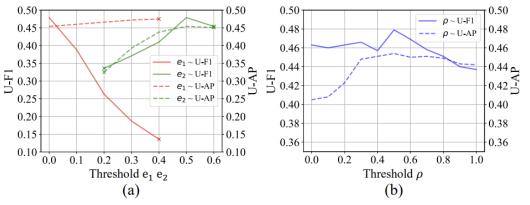


Figure 6. Sensitivity analysis on (a) thresholds e_1, e_2 , and (b) threshold ρ . × indicates the failed training outside this threshold.

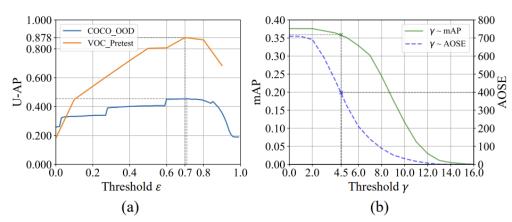
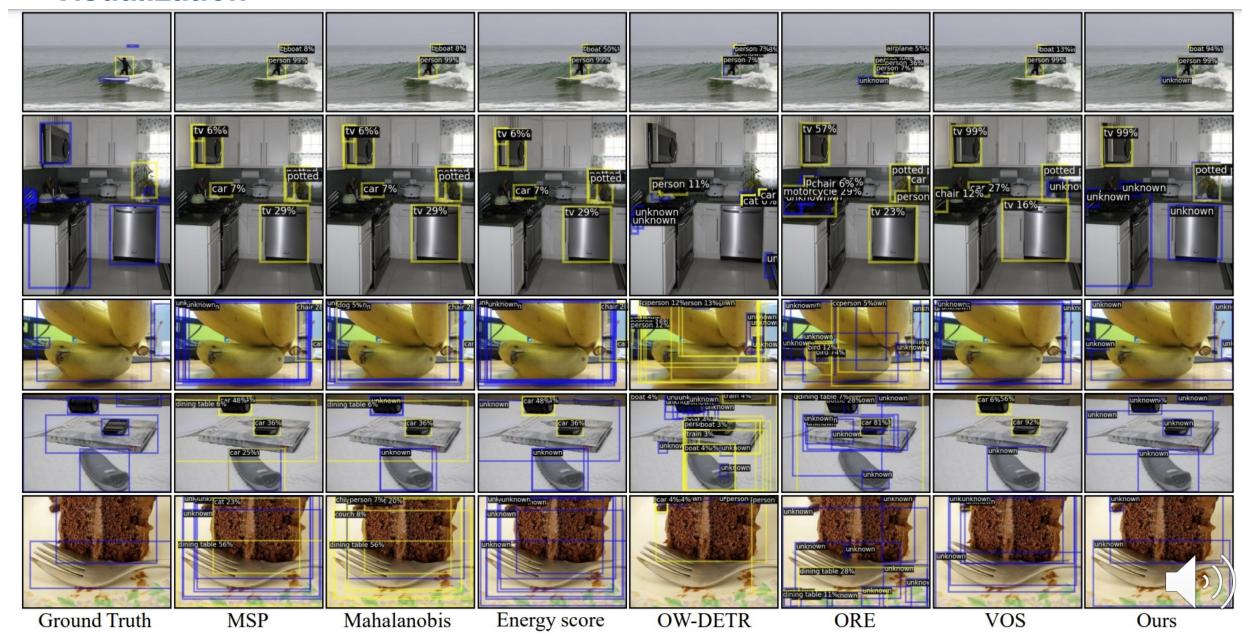


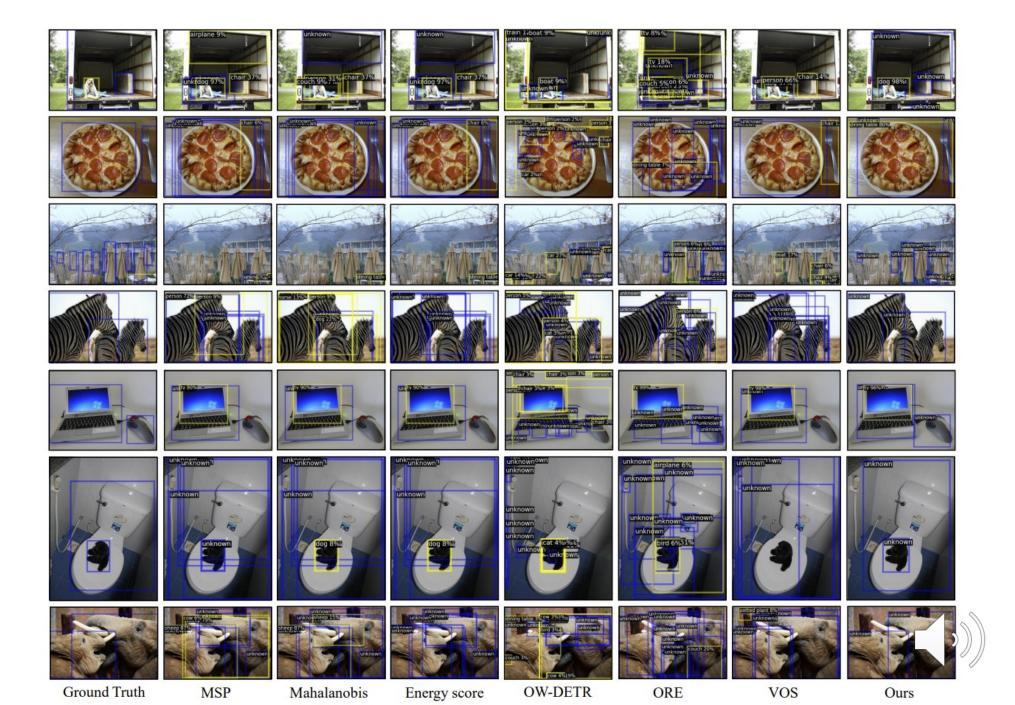
Figure 8. (a) Comparison between the thresholds ε determined in the pretest set and the COCO-OOD dataset. (b) Comparison of mAP and AOSE between the thresholds determined in the preset (dot) and the COCO-Mix dataset (line).

Detection Results and Video Demos

Visualization



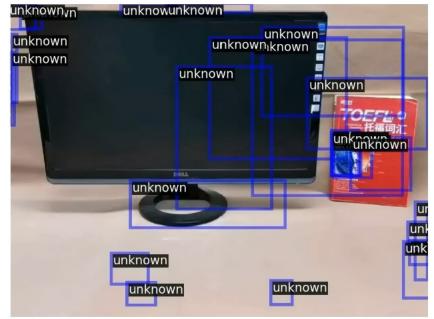
Visualization



Video Demo1

UnSniffer

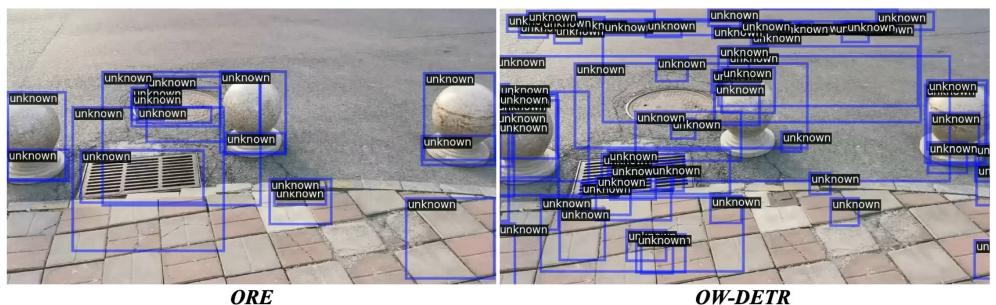
VOS



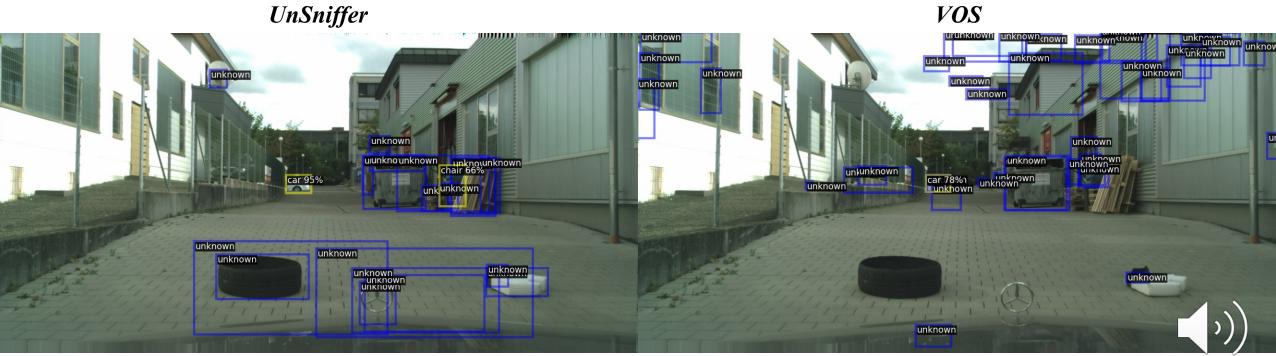
OW-DETR

ORE

Video

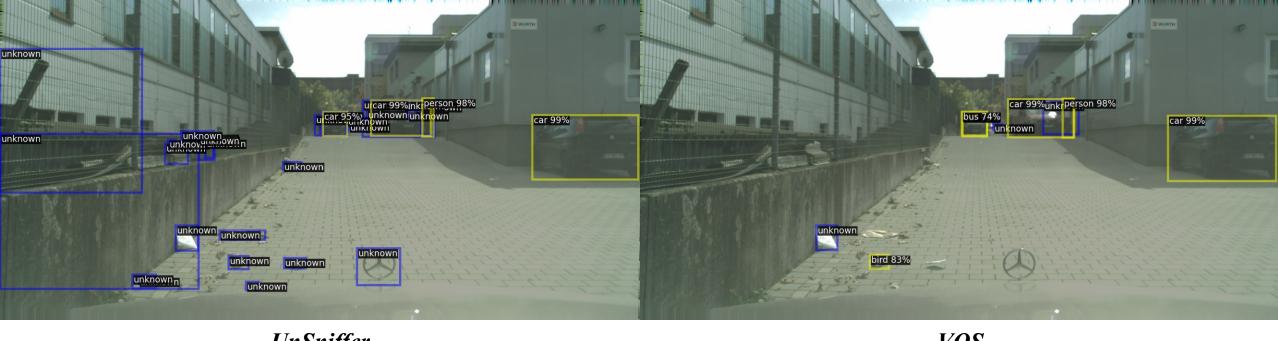


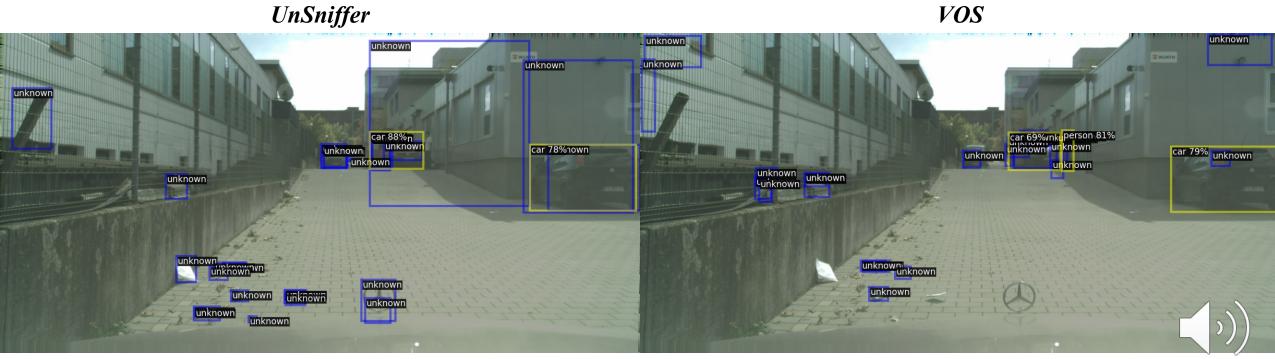
OW-DETR



ORE

OW-DETR





ORE

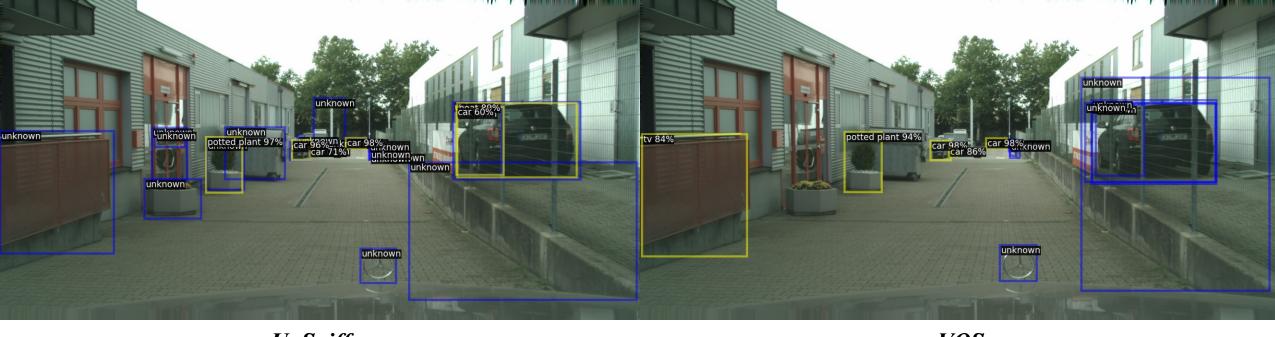
OW-DETR

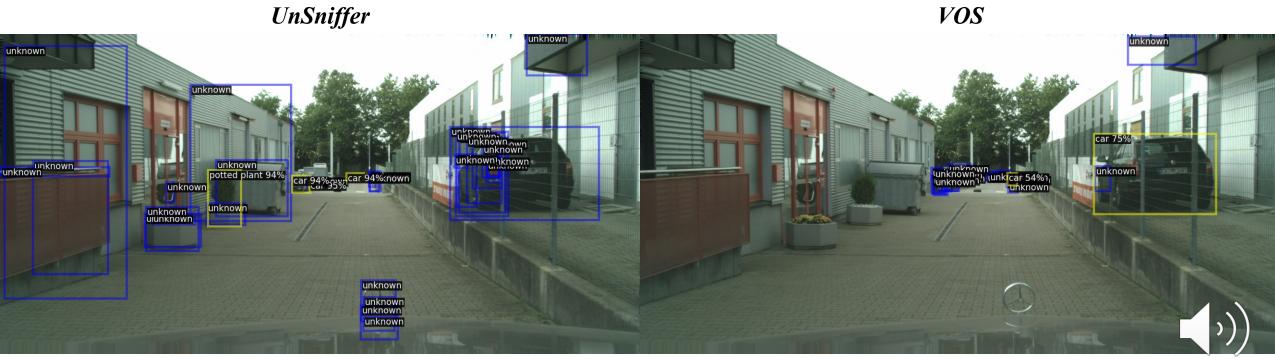


UnSniffer VOS

ORE

OW-DETR





ORE

OW-DETR

Thanks !!!

