

PointClustering: Unsupervised Point Cloud Pre-training using Transformation Invariance in Clustering

Fuchen Long, Ting Yao, Zhaofan Qiu, Lusong Li and Tao Mei HiDream.ai Inc

Poster ID: 116

Paper Tag: THU-PM-116

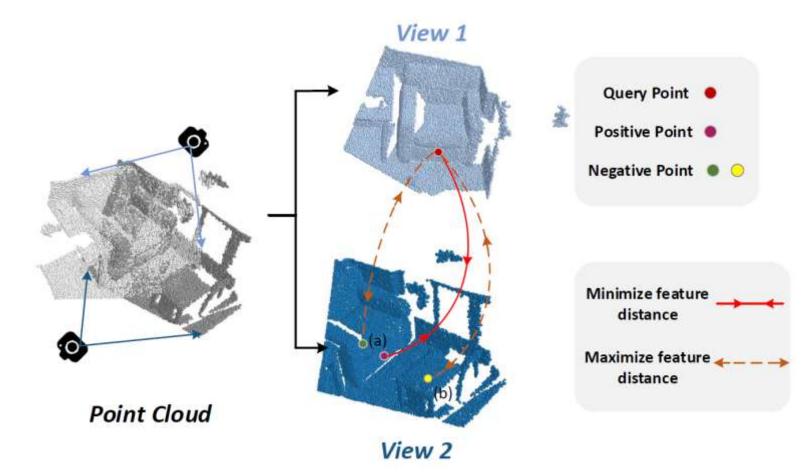
New Point Cloud Pre-training Paradigm: PointClustering ANCOUVER, CANADA View 1 Query Point Distance back-propagation Positive Point Optimization point clouds Negative Point transformation backbone point clouds Clustering 0.0 (a) clustering learning on point cloud Minimize feature distance View 2 View 1 point feature 0 Maximize feature distance Point Cloud Scene 1 transformation View 2 **Contrastive Learning Clustering Learning** (b) point level invariance learning View 2 View 1 🍘 🅥 instance feature Original The tree turns green transformation Scene Decoder 00 Encoder 20 Masked The tree green transformation **Clustering Learning** Point cloud Autoencoder Language Image (c) instance level invariance learning Reconstruction 2

Previous Learning Paradigms

Our Proposal

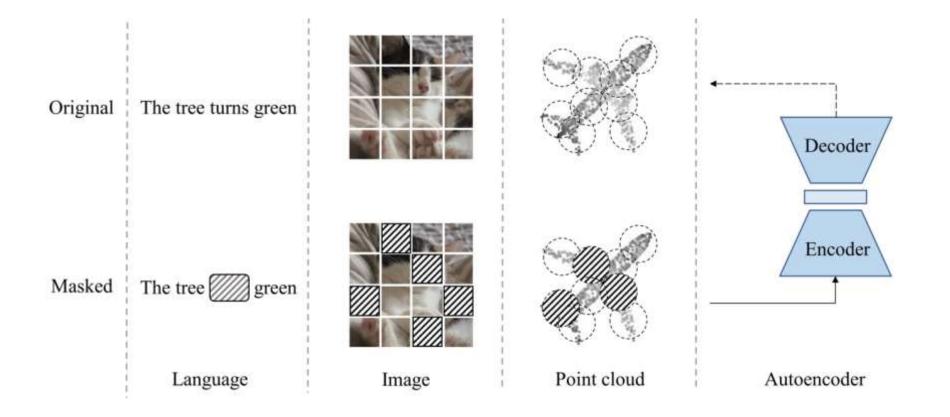
Unsupervised Point Cloud Pre-training

Contrastive Learning



Unsupervised Point Cloud Pre-training

Reconstruction

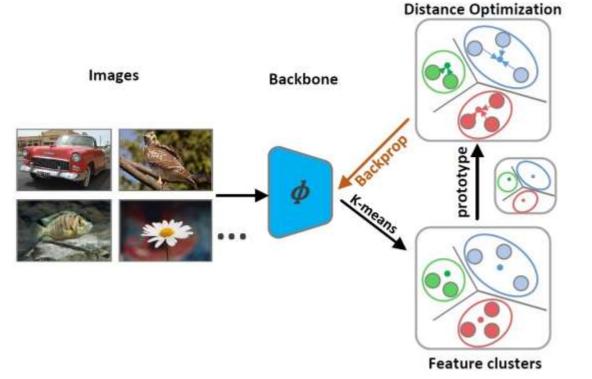


Limitation & Solution

- Sample-specific Unsupervised Learning
 - Semantics of instances are not fully explored

- New Paradigm of Point Clustering
 - Clustering estimates data distribution holistically
 - Class-level semantic information mining

Deep Clustering for Image



InfoNCE-based Clustering Loss:

$$L_c(f_i, \mathbf{u}, \mathbf{y}) = -\log \frac{\exp\left(f_i \cdot u_{y_i}/\tau\right)}{\sum_{j=0}^{K-1} \exp\left(f_i \cdot u_j/\tau\right)},$$

- Iterative Learning in each epoch
 - Feature extraction and K-means clustering
 - Similarity optimization between feature and clustering prototypes
- Semantic Exploration
 - Class-level information exploration
- Directly apply to Point Clouds
 - Ignore inherent geometry of 3D point data

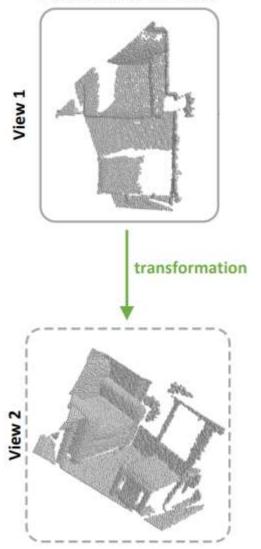
Clustering Learning on Point Clouds



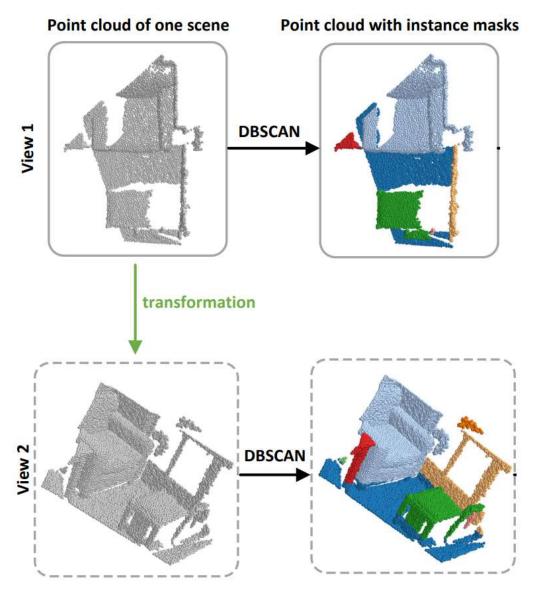
- Feature invariance learning as the inductive bias in clustering
- Exploitation of geometric and semantics for transformation invariance

Point cloud of one scene

Point cloud of one scene



Apply data transformation (e.g., rotation) on each scene to generate two views

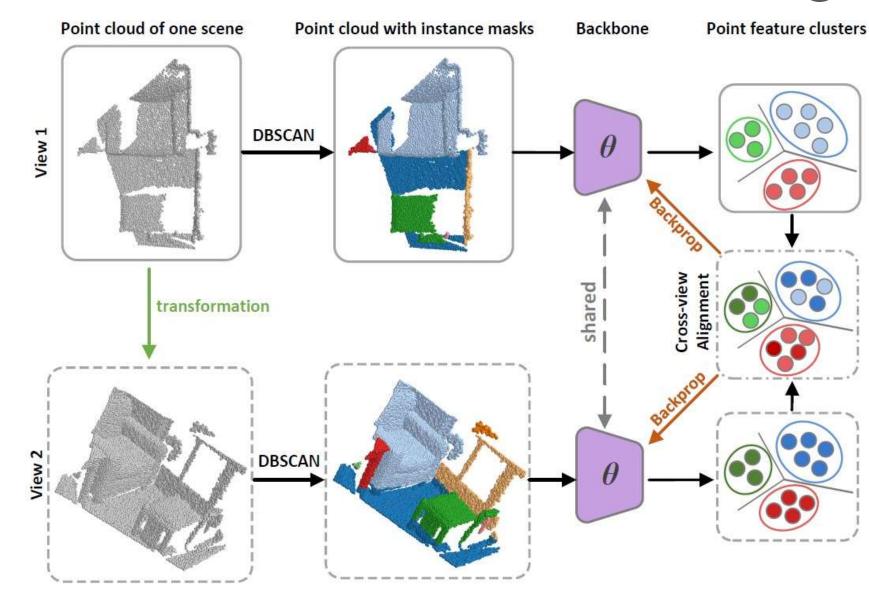


Apply DBSCAN to cluster points into instances

Point prototype set of each view \mathbf{u}^{P_1} and \mathbf{u}^{P_2}

Assigned point label set of each view \mathbf{y}^{P_1} and \mathbf{y}^{P_2}

Ester et al. A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise. In SIGKDD, 1996.



Point feature extraction of two views

 $f_i^{P_1} \ \mathrm{and} \ f_i^{P_2}$

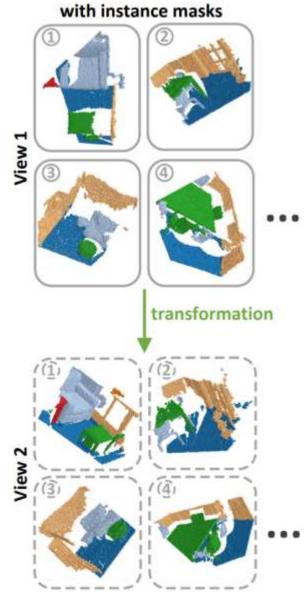
Inner-view clustering loss $L_{ine}^{P} = L_{c}(f_{i}^{P_{1}}, \mathbf{u}^{P_{1}}, \mathbf{y}^{P_{1}}) + L_{c}(f_{i}^{P_{2}}, \mathbf{u}^{P_{2}}, \mathbf{y}^{P_{2}}),$

Cross-view clustering loss $L_{cro}^{P} = L_{c}(f_{i}^{P_{1}}, \mathbf{u}^{P_{2}}, \mathbf{y}^{P_{2}}) + L_{c}(f_{i}^{P_{2}}, \mathbf{u}^{P_{1}}, \mathbf{y}^{P_{1}}).$

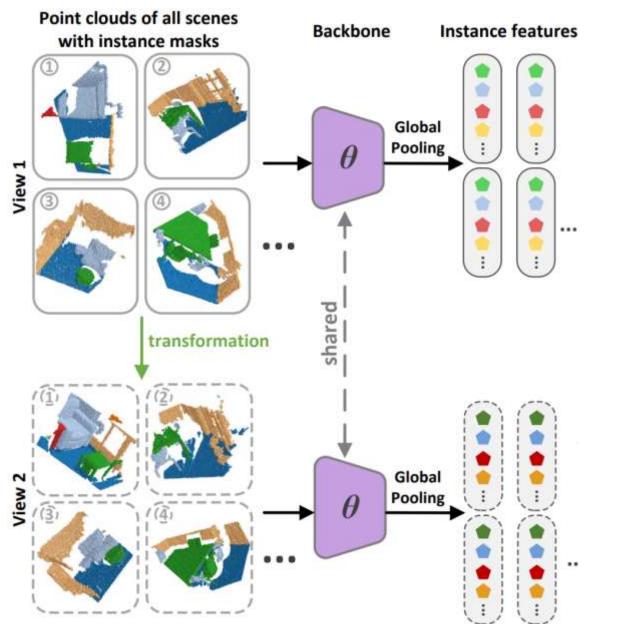
Point-level loss $L^P = L_{ine}^P + L_{cro}^P$.

Instance-level Invariance Learning

Point clouds of all scenes



Instance-level Invariance Learning

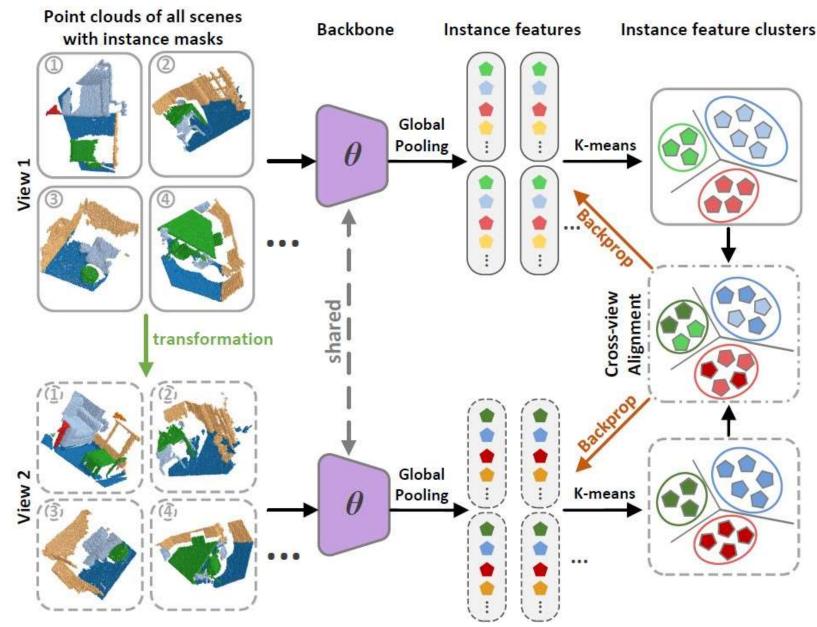


Instance-level invariance learning on all instances over the entire dataset

Instance feature is obtained through globally pooling point features

Instance prototype set of each view \mathbf{u}^{I_1} and \mathbf{u}^{I_2} Assigned instance label set of each view \mathbf{y}^{I_1} and \mathbf{y}^{I_2}

Instance-level Invariance Learning



Instance feature of two views $f_i^{I_1}$ and $f_i^{I_2}$

Inner-view clustering loss $L_{ine}^{I} = L_{c}(f_{i}^{I_{1}}, \mathbf{u}^{I_{1}}, \mathbf{y}^{I_{1}}) + L_{c}(f_{i}^{I_{2}}, \mathbf{u}^{I_{2}}, \mathbf{y}^{I_{2}}).$ Cross-view clustering loss $L_{cro}^{I} = L_{c}(f_{i}^{I_{1}}, \mathbf{u}^{I_{2}}, \mathbf{y}^{I_{2}}) + L_{c}(f_{i}^{I_{2}}, \mathbf{u}^{I_{1}}, \mathbf{y}^{I_{1}}).$

Instance-level loss $L^{I} = L^{I}_{ine} + L^{I}_{cro}$.

Overall loss $L_{ov} = L^P + L^I$.

Experiments

- Datasets
 - Pre-training Dataset
 - ScanNet: 2.5M RGB-D scaning frames
 - Extract 190K 3D scans from 1,200 depth video sequences
 - Sample 8,192 points of each scans for pre-training
 - Datasets of Downstream Tasks

Dataset	Statistic	Task	Gain
ModelNet40 [62]	9.8K train, 2.5K val	Object Cls.	+3.0% Acc
ScanObjectNN [56]	11.4K train, 2.9K val	Object Cls.	+10.1% Acc
ShapeNetPart [69]	14.0K train, 2.9K val	Part Seg.	+1.6% mIoU
PartNet [40]	17.1K train, 2.5K val	Part Seg.	+4.3% mIoU
S3DIS [3]	199 train, 67 val	Semantic Seg.	+6.7% mIoU
ScanNetV2 [10]	1.2K train, 312 val	Semantic Seg.	+5.7% mIoU

Performance Comparisons

• Comparisons with the state-of-the-art methods

Performances on classification

Performances on part segmentation

Performances on semantic segmentation

Approach	Backbone	ModelNet40	ScanObjectNN
Scratch	PointNet++	90.7	77.9
DepthContrast [74]	PointNet++	91.3	2
GLR [50]	PointNet++	93.0	22
ReSp [52]	DGCNN	92.4	
OcCo [60]	DGCNN	93.0	-
PointClustering	PointNet++	94.1 (+3.4)	84.5 (+6.6)
Scratch	SR-UNet	90.1	76.2
PointContrast [65]	SR-UNet	91.2	-
PointClustering	SR-UNet	93.6 (+3.5)	83.7 (+7.5)
Scratch	PointViT	91.5	77.2
Point-BERT [70]	PointViT	93.2	83.1
MaskPoint [34]	PointViT	93.8	84.3
Point-MAE [41]	PointViT	93.8	85.2
MaskSurf [73]	PointViT	93.4	85.8
PointClustering	PointViT	94.5 (+3.0)	87.3 (+10.1)

Approach	Backbone	ShapeNetPart	PartNet
Seratch	PointNet++	84.9	42.5
OcCo [60]	DGCNN	85.0	
ReSp [52]	DGCNN	85.3	5 4
PointClustering	PointNet++	85.9 (+1.0)	47.0 (+4.5)
Scratch	SR-UNet	84.7	38.9
PointContrast [65]	SR-UNet	85.1	41.5
PointClustering	SR-UNet	86.0 (+1.3)	42.1 (+3.2)
Seratch	PointViT	85.1	45.8
Point-BERT [70]	PointViT	85.6	3 2
MaskPoint [34]	PointViT	86.0	12
MaskSurf [73]	PointViT	86.1	
Point-MAE [41]	PointViT	86.1	-
PointClustering	PointViT	86.7 (+1.6)	50.1 (+4.3)

Approach	Backbone	S3DIS	ScanNetV2
Scratch	PointNet++	55.3	57.9
OcCo [60]	DGCNN	58.0	
PointClustering	PointNet++	61.2 (+5.9)	62.6 (+4.7)
Scratch	SR-UNet	68.2	70.3
DepthContrast [74]	SR-UNet	71.5	71.2
CSC [23]	SR-UNet	72.2	73.8
PointContrast [65]	SR-UNet	70.9	74.1
PointClustering	SR-UNet	73.2 (+5.0)	75.5 (+5.2)
Scratch	PointViT	58.9	60.1
Point-MAE [41]	PointViT	60.0	-
MaskSurf [73]	PointViT	61.6	-
PointClustering	PointViT	65.6 (+6.7)	65.8 (+5.7)

PointClustering achieves better performances with three kinds of point backbone, i.e., PointNet++, SR-UNet and PointViT, on all benchmarks

Performance Comparisons

Ablation Studies

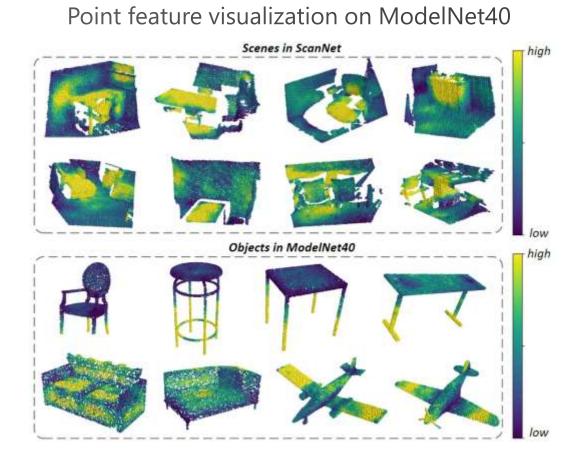
Ablation studies on different invariance learning

Model point-level inv. instance-le	wel inv. ModelNet40	ScanObjectNN
Scratch	90.7	77.9
SceneClustering	91.0	78.1
PointClustering ⁻	91.5	80.1
1	93.0	82.6
\checkmark	93.4	83.1
\checkmark \checkmark	94.1	84.5

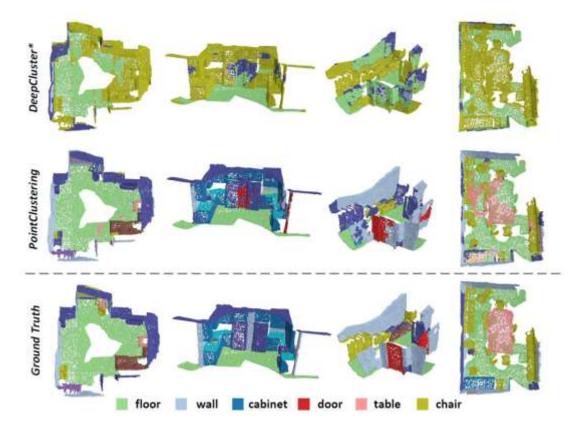
Ablation studies on instance clustering number K 94.1 93.6 93.6 93.2 949L6 92 :90 Top-1 Accuracy 88 86 84.5 82 → ModelNet40 ScanObjectNN -0-80 92 24 91 03 95 Number of K^{I}

17

Point-level and Instance-level



Unsupervised semantic segmentation on ScaneNetV2



Thanks!

longfc.ustc@gmail.com

Source Code: https://github.com/FuchenUSTC/PointClustering