

Language Adaptive Weight Generation for Multi-task Visual Grounding

Wei Su¹, Peihan Miao¹, Huanzhang Dou¹, Gaoang Wang⁴ Liang Qiao^{1,3}, Zheyang Li^{1,3}, Xi Li^{1,2,5}

¹Zhejiang University ²Shanghai AI Laboratory ³Hikvision Research Institute ⁴Zhejiang University-University of Illinois Urbana-Champaign Institute, Zhejiang University ⁵Shanghai Institute for Advanced Study of Zhejiang University

Tag: WED-AM-250

Motivation

- The visual backbone passively extracts features
- Fixed architectures and weights
- Regardless of referring expressions
- Mismatches between the extracted visual features and those required for various referring expressions
- Missing or redundant visual features
- ✓ An active perception visual grounding framework, which can actively extract expression-relevant visual features.

Related Work: Dynamic Weight Networks

Method: VG-LAW

An active perception framework for multi-task visual grounding based on the language adaptive weights

- > Components: visual backbone, linguistic backbone, multi-task head, language adaptive weight generator
- Language adaptive weights: mapping linguistic features to weights of the visual backbone
- Visual backbone can actively extract expression-relevant visual features using language-adaptive weights
- > Don't need to modify the visual backbone architecture or elaborately design cross-modal interaction modules

Method: Language Adaptive Weight Generation

Linguistic Feature Aggregation

Aggregate linguistic features with fixed sizes for each layer independently.

$$\alpha_i^g = \operatorname{Softmax}\left(\left[e_i^g \cdot F_l^{g,1}, e_i^g \cdot F_l^{g,2}, \cdots, e_i^g \cdot F_l^{g,L}\right]\right)$$
$$h_0^{i,g} = \sum_{j=1}^L \alpha_i^{g,j} F_l^{g,j}, \ h_1^i = \delta\left(W_1^i h_0^i\right)$$

Weight Generation

Map linguistic features to language-adaptive weights using the multi-head attention mechanism

 $\begin{bmatrix} W_q^i, W_k^i, W_v^i \end{bmatrix} = W_0^i + P\Phi(h_1^i)Q^T$ $X_q = \theta(X; W_q), \ X_k = \theta(X; W_k), \ X_v = \theta(X; W_v)$

Experiments

> Training Objectives

- REC: L1 loss and Generalized IoU loss
- RES: Focal loss and DICE/F-1 loss

$$\begin{aligned} \mathcal{L}_{det} &= \lambda_{L1} \mathcal{L}_{L1}(b, \hat{b}) + \lambda_{giou} \mathcal{L}_{giou}(b, \hat{b}) \\ \mathcal{L}_{seg} &= \lambda_{focal} \mathcal{L}_{focal}(s, \hat{s}) + \lambda_{dice} \mathcal{L}_{dice}(s, \hat{s}) \\ \mathcal{L}_{total} &= \mathcal{L}_{det} + \mathcal{L}_{seg} \end{aligned}$$

Configs

- Datasets: RefCOCO, RefCOCO+, RefCOCOg, and ReferItGame
- Evaluation Protocol: Prec@0.5 for REC and mIoU for RES

Comparison with State-of-the-art REC Methods

		Visual	Multi-	RefCOCO		RefCOCO+			RefCOCOg		ReferItGame	
Methods	Venue	Backbone	task	val	testA	testB	val	testA	testB	val	test	test
Two-stage:												
MAttNet [46]	CVPR18	RN101	×	76.65	81.14	69.99	65.33	71.62	56.02	66.58	67.27	29.04
RvG-Tree [13]	TPAMI19	RN101	×	75.06	78.61	69.85	63.51	67.45	56.66	66.95	66.51	-
CM-A-E [30]	CVPR19	RN101	×	78.35	83.14	71.32	68.09	73.65	58.03	67.99	68.67	-
Ref-NMS [2]	AAAI21	RN101	×	80.70	84.00	76.04	68.25	73.68	59.42	70.55	70.62	-
One-stage:												
FAOA [43]	ICCV19	DN53	×	72.54	74.35	68.50	56.81	60.23	49.60	61.33	60.36	60.67
ReSC-Large [42]	ECCV20	DN53	×	77.63	80.45	72.30	63.59	68.36	56.81	67.30	67.20	64.60
MCN [33]	CVPR20	DN53	\checkmark	80.08	82.29	74.98	67.16	72.86	57.31	66.46	66.01	-
RealGIN [49]	TNNLS21	DN53	×	77.25	78.70	72.10	62.78	67.17	54.21	62.75	62.33	-
PLV-FPN* [26]	TIP22	RN101	×	81.93	84.99	76.25	71.20	77.40	61.08	70.45	71.08	71.77
Transformer-based:												
TransVG [4]	ICCV21	RN101	×	81.02	82.72	78.35	64.82	70.70	56.94	68.67	67.73	70.73
RefTR* [23]	NeurIPS21	RN101	\checkmark	82.23	85.59	76.57	71.58	75.96	62.16	69.41	69.40	71.42
SeqTR [50]	ECCV22	DN53	×	81.23	85.00	76.08	68.82	75.37	58.78	71.35	71.58	69.66
Word2Pix [48]	TNNLS22	RN101	×	81.20	84.39	78.12	69.74	76.11	61.24	70.81	71.34	-
YORO [12]	ECCVW22	-	×	82.90	85.60	77.40	73.50	78.60	64.90	73.40	74.30	71.90
QRNet [45]	CVPR22	Swin-S	×	84.01	85.85	82.34	72.94	76.17	63.81	71.89	73.03	74.61
Ours:												
VG-LAW	-	ViT-B	×	86.06	88.56	82.87	75.74	80.32	66.69	75.31	75.95	76.60
VG-LAW	-	ViT-B	\checkmark	86.62	89.32	83.16	76.37	81.04	67.50	76.90	76.96	77.22

Comparisons on the RefCOCO, RefCOCO+, RefCOCOg, and ReferItGame datasets. RN101, DN53, Swin-S, and ViT-B are shorthand for the ResNet101, DarkNet53, Swin-Transformer Small, and ViT Base, respectively. We highlight the best and second-best performance in the red and blue colors.

Comparison with State-of-the-art RES Methods

		Visual	Multi-]	RefCOCO)	F	RefCOCO	+	RefC	OCOg
Methods	Venue	Backbone	task	val	testA	testB	val	testA	testB	val	test
CGAN [32]	MM20	DN53	×	64.86	68.04	62.07	51.03	55.51	44.06	54.40	54.25
MCN [33]	CVPR20	DN53	\checkmark	62.44	64.20	59.71	50.62	54.99	44.69	49.22	49.40
LTS [17]	CVPR21	DN53	×	65.43	67.76	63.08	54.21	58.32	48.02	54.40	54.25
VLT [50]	ICCV21	DN53	×	65.65	68.29	62.73	55.50	59.20	49.36	52.99	56.65
RefTR* [23]	NeurIPS21	RN101	\checkmark	70.56	73.49	66.57	61.08	64.69	52.73	58.73	58.51
SeqTR [50]	ECCV22	DN53	×	67.26	69.79	64.12	54.14	58.93	48.19	55.67	55.64
LAVT* [44]	CVPR22	Swin-B	×	74.46	76.89	70.94	65.81	70.97	59.23	63.62	63.66
Ours:											
VG-LAW	-	ViT-B	×	75.05	77.36	71.69	66.61	70.30	58.14	65.36	65.13
VG-LAW	-	ViT-B	\checkmark	75.62	77.51	72.89	66.63	70.38	58.89	65.63	66.08

Comparisons on the RefCOCO, RefCOCO+, and RefCOCOg for RES task. * represents ImageNet pre-training. RN101, DN53, Swin-B, and ViT-B are shorthand for the ResNet101, DarkNet53, Swin-Transformer Base, and ViT Base, respectively. We highlight the best and second-best performance in the red and blue colors.

Ablation Analysis

LAWG	LAP	MTH	<i>Prec</i> @0.5(%)
\checkmark			74.89
	\checkmark		74.37
\checkmark	\checkmark		76.60
<u> </u>	\checkmark	\checkmark	77.22

Ablation experiments on ReferItGame to evaluate the proposed language adaptive weight generation (LAWG), language adaptive pooling (LAP), and multi-task head (MTH).

> Analysis of Referring Expression Length

No significant performance degradation when the length of referring expressions varies from 6-7 to 11+.

\succ Qualitative results

Expression1: purple curtain

Expression1: baby sheep in front

Expression1: blue striped shirt

Expression1: a flower vase between two others

Attention

Image

Attention

From left to right: the input image, the ground truth of REC and RES, the prediction of VG-LAW, and the attention of the visual backbone with language-adaptive weights.

Expression2: the painting/photo on the wall

Expression2: person in green jacket on lift

Expression2: a silver van in the road

Conclusion

Contributions

- An active perception visual grounding framework based on the language adaptive weights (VG-LAW), actively extracts the expression-relevant visual features.
- ✓ A neat yet efficient multi-task head for REC and RES tasks jointly without carefully designed crossmodal interaction modules.
- ✓ State-of-the-art performance on RefCOCO, RefCOCO+, RefCOCOg, and ReferItGame.

Future Works

- Search for the suitable positions of modules to inject the linguistic information/priors, instead of modifying the weights of all modules in the visual backbone.
- □ Enhance the multi-task head to enable multi-instance referring detection and segmentation.
- □ Expand VG-LAW to more types of visual backbones, e.g. Resnet series.