VideoMAE V2: Scaling Video Masked Autoencoders with Dual Masking

Limin Wang^{1,2,*} Bingkun Huang^{1,2,*} Zhiyu Zhao^{1,2} Zhan Tong¹ Yinan He² Yi Wang² Yali Wang^{3,2} Yu Qiao^{2,3} ¹ State Key Laboratory for Novel Software Technology, Nanjing University, China ² Shanghai AI Lab, China ³ Shenzhen Institute of Advanced Technology, CAS, China

: 海人工智能实验室 anghai Artificial Intelligence Laboratory

Code & Weights Here!

Background

• On the Opportunities and Risks of Foundation Models, arXiv 2022

- Foundation Model
 - trained on broad data (generally using self-supervision at scale)
 - can be adapted to a wide range of downstream tasks

VideoMAE V2

• Aims to

- study the scaling property of video masked autoencoder
- push its performance limit on video downstream tasks
- Methods
 - Dual masking
 - Model scaling
 - Data Scaling
 - Progressive training

Results

6 SOTA on video tasks

Revisit VideoMAE

- Asymmetric encoder-decoder architecture
- Simple but effective masking and reconstruction pretext task
- Tube masking with extremely high mask ratio

Challenges of scaling VideoMAE

- Bottleneck of computational cost and memory consumption
 - Dual Masking
 - 90% Tube Masking for Encoder
 - 50% Running Cell Masking for Decoder
- Limited availability of public video datasets
 - UnlabeledHybrid
 - Kinetics, SSv2, AVA, WebVid, self-collected Instagram videos
- Uncertainty in adapting the billion-level pre-trained model
 - Progressive training
 - Pre-training \rightarrow Post-pre-training \rightarrow Specific Fine-tunning

Bottleneck of computational cost and memory consumption

- Dual Masking
 - 90% Tube Masking for Encoder
 - 50% Running Cell Masking for Decoder

Decoder Masking	$ ho^d$	Top-1	FLOPs
None	0%	70.28	35.48G
Frame	50%	69.76	25.87G
Random	50%	64.87	25.87G
Running cell ¹	50%	66.74	25.87G
Running cell ²	25%	70.22	31.63G
Running cell ²	50%	70.15	25.87G
Running cell ²	75%	70.01	21.06G

Masking	Backbone	pre-training dataset	FLOPs	Mems	Time	Speedup	Top-1
Encoder masking	ViT-B	Something-Something V2	35.48G	631M	28.4h	-	70.28
Dual masking	ViT-B	Something-Something V2	25.87G	328M	15.9h	1.79 ×	70.15
Encoder masking	ViT-g	UnlabeledHybrid	263.93G	1753M	356h ¹	-	-
Dual masking	ViT-g	UnlabeledHybrid	241.61G	1050M	241h	1.48 ×	77.00

Limited availability of public video datasets

UnlabeledHybrid

• Kinetics, SSv2, AVA, WebVid, self-collected Instagram videos

• 1.35 million video clips

method	pre-train data	data size	epoch	ViT-B	ViT-L	ViT-H	ViT-g
MAE-ST [18]	Kinetics400	0.24M	1600	81.3	84.8	85.1	-
MAE-ST [18]	IG-uncurated	1 M	1600	-	84.4	-	-
VideoMAE V1 [63]	Kinetics400	0.24M	1600	81.5	85.2	86.6	-
VideoMAE V2	UnlabeledHybrid	1.35M	1200	81.5 (77.0)	85.4 (81.3)	86.9 (83.2)	87.2 (83.9)
$\Delta Acc.$ with V1	-	-	-	+0%	+ 0.2%	+ 0.3%	-

Results on the Kinetics-400 dataset

method	pre-train data	data size	epoch	ViT-B	ViT-L	ViT-H	ViT-g
MAE-ST [18]	Kinetics400	0.24M	1600	-	72.1	74.1	-
MAE-ST [18]	Kinetics700	0.55M	1600	-	73.6	75.5	-
VideoMAE V1 [63]	Something-Something V2	0.17M	2400	70.8	74.3	74.8	-
VideoMAE V2	UnlabeledHybrid	1.35M	1200	71.2 (69.5)	75.7 (74.00)	76.8 (75.5)	77.0 (75.7)
$\Delta Acc.$ with V1	-	-	-	+ 0.4 %	+ 1.4 %	+ 2.0 %	-

Results on the Something-Something V2 dataset

Uncertainty in adapting the billion-level pre-trained model

- Progressive training
 - Pre-training on UnlabeledHybrid
 - Post-pre-training on LabeledHybrid (Kinetics 710)
 - Specific Fine-tunning on downstream dataset

method	extra supervision	ViT-H	ViT-g
MAE-ST [18]	K600	86.8	-
VideoMAE V1 [63]	K710	88.1 (84.6)	-
VideoMAE V2	-	86.9 (83.2)	87.2 (83.9)
VideoMAE V2	K710	88.6 (85.0)	88.5 (85.6)
$\Delta Acc.$ with V1	K710	+ 0.5%	-

Study on progressive pre-training

Powerful VideoMAE V2-g

• ViT-giant with 1.01 billion parameters

• Performance Ranks

✓ SOTA	AVA-Kinetics	43.9
✓ SOTA	AVA v2.2	42.6
✓ SOTA	FineAction	18.2
✓ SOTA	THUMOS'14	69.6
✓ SOTA	HMDB-51	88.1
✓ SOTA	UCF101	99.6
✓ RANK #2	SSv1	68.7
✓ RANK #3	SSv2	77.0
✓ RANK #5	Kinetics-400	90.0
✓ RANK #9	Kinetics-600	89.9

Code & Weights Here!

Distillation

Model	Dataset	Teacher Model	#Frame	К710 Тор-1	K400 Top-1	К600 Тор-1	Checkpoint
ViT- small	K710	vit_g_hybrid_pt_1200e_k710_ft	16x5x3	77.6	83.7	83.1	vit_s_k710_dl_from_giant.pth
		fine-tuning accuracy	16x7x3		84.0	84.6	
ViT- base	K710	vit_g_hybrid_pt_1200e_k710_ft	16x5x3	81.5	86.6	85.9	vit_b_k710_dl_from_giant.pth
		fine-tuning accuracy	16x7x3		87.1	87.4	