

Restoration of Hand-Drawn Architectural Drawings using Latent Space Mapping with Degradation Generator

WED-PM-173

Nakkwan Choi¹, Seungjae Lee², Yongsik Lee², Seungjoon Yang¹*

¹Ulsan National Institute of Science and Technology ²Electronics and Telecommunications Research Institute

SCIENCE AND TECHNOLOGY

JUNE 18-22, 2023

Quick Preview

- We present restoration method of architectural drawings
 - Using unpaired clean-aged drawings and noisy drawings degraded by synthesis
 - We generate realistic aged drawings for generalizing synthesis domain to aged domain
 - Proposed method is based on VQGAN and is a 2-stage model.
- The proposed method reports meaningful gain in quantitative and qualitative results

Introduction

Motivation

- Drawings are essential for the systematic management of traditional buildings.
- The initial drawings of the building before the deformation occurs contain valuable information.
- In the initial drawing, information loss has occurred due to deterioration
 - Faded and deteriorated lines
 - Smeared and blurred complex parts
 - Background in faded color

Aged Drawings

Introduction

Motivation

- The archived clean and aged drawings are unpaired.
- As prior approach [1], we construct paired datasets by synthesizing noise into clean drawings.
- This synthesized dataset showed performance degradation for aged drawings.
- Proposal generate realistic aged drawings with augmented drawings to restore aged drawings

Overview

• The proposed method performs restoration based on VQGAN and consists of two stages.

Stage 1

- Learning VQGAN for pre-training on clean drawing
- Codebook ${\mathcal C}$ learn discrete latent variables for clean drawings.

Stage 2: Mapping

- Pre-trained parts in the first stage is frozen in the second stage.
- Mapping latent variables of encoded noisy drawings to encoded clean drawings

Codebook \mathcal{C}

Stage 2: Degradation Generator (DG)

- Producing augmented version of noisy drawings from clean drawings
- Feeding intermediate activation of the G_c to G_n in order to keep up the drawings
- Concatenating activation and using deformable convolution for drawing degradation
- Generator G_n is trained adversarially on aged drawings x_r

Stage 2

- Degraded drawing \hat{x}_g is used as augmented noisy drawing for mitigating generalize gap

Inference

• We operate the model patch by patch, and restoration is performed through E_n , code, G_c .

Dataset

- Traditional wooden buildings drawings from Cultural Heritage Administration website¹
 - Drawings contain frontal elevations, side elevations and details
 - Drawn by 10 studios between the 1970s and 2000s.
 - National heritages: 12, Heritages: 43
 - Clean drawings: 330, Aged drawings: 350
- We randomly crop the drawings with 256x256 resolutions for training

Setup

- We consider two configurations.
- In the following notation, HVQ and RVQ stand for Hierarchical-VQ [2] and Residual-VQ [3], respectively.

[2] Ali Razavi, Aaron van den Oord, and Oriol Vinyals. Generating diverse high-fidelity images with vq-vae-2, NeurIPS, 2019

[3] Doyup Lee, Chiheon Kim, Saehoon Kim, Minsu Cho, and Wook-Shin Han. Autoregressive image generation using residual quantization. CVPR, 2022.

Clean Drawings

Aged Drawings

¹http://english.cha.go.kr/cha/idx/SubIndex.do?mn=EN

Generating degraded drawings

	KID↓	FID↓	
CycleGAN [25]	$0.035 {\pm} 0.001$	$59.979 {\pm} 0.08$	
MMA-CycleGAN [9]	$0.033{\pm}0.001$	$54.862 {\pm} 0.15$	
Proposed (HVQ-DG)	$0.015 {\pm} 0.001$	$29.663 {\pm} 0.05$	
Proposed (RVQ-DG)	$0.023{\pm}0.001$	$41.159 {\pm} 0.06$	

Qualitative Results of Restoration

	SSIM↑	PSNR↑	LPIPS↓	FID↓
SASAKI et al. [16]	0.8870	21.32	0.1977	98.677
WAN et al. [19]	0.9548	22.73	0.0632	36.090
YUE <i>et al</i> . [20]	0.9534	23.83	0.0713	42.121
Guo <i>et al</i> . [21]	0.9616	24.78	0.0585	37.025
Proposed (HVQ)	0.9683	25.89	0.0559	36.812
Proposed (RVQ)	0.9613	24.96	0.0531	36.468
Proposed (HVQ-DG)	0.9673	25.82	0.0564	36.590
Proposed (RVQ-DG)	0.9576	24.51	0.0542	33.500

Ablation Study about Degradation Generator

Top: Aged Drawings. Middle: without DG. Bottom: with DG.

Quantitative Results in Aged Drawings

Quantitative Results in Aged Drawings

Aged drawings

Top: Yue et al. Bottom: Wan et al.

Top: proposed (HVQ-DG). Bottom: proposed (RVQ-DG).

JUNE 18-22, 2023

Conclusion

- We propose VQGAN-based restoration method for aged architectural drawings
- We propose the degradation generator to generalize the model to aged drawings
- We report a meaningful gain in quantitative and qualitative results