

UNIVERSITY OF CENTRAL FLORIDA

Hybrid Active Learning via Deep Clustering for Video Action Detection THU-AM-228

Aayush J Rana, Yogesh S Rawat Center for Research in Computer Vision (CRCV) University of Central Florida (UCF)

Challenges

- Training requires dense annotation
 - Dense data ∞ large annotation cost
- Unnecessary cost
 - Repetitive nearby frames
 - Unrelated frames annotated
- Comparison across videos
 - Varying length
 - Varying actors
 - Class-wise difficulty
 - No difficulty metric

Previous work

- Annotation selection at frame level
- Assumes all videos annotated
 - Partial annotations
 - No metric to compare between videos

UCF Center for Research in Computer Vision

Motivation

- Reduce annotation cost
 - Video level selection
 - Frame level selection
 - Remove redundant videos
- Enable video comparison using
 - Informativeness
 - Diversity
- Improve sparse training
 - Improve pseudo-label usage

Contributions

- Hybrid selection (*CLAUS*)
 - AL based strategy
 - Video + frame selection
 - Uncertainty based video ranking
 - Clustering based video selection
- Improved pseudo-label loss (STeW)
 - Pixel-level weight
 - BG/FG consistency

Proposed approach

Model Training Objectives

- Classification loss
- Localization loss
 - Spatio-Temporally Weighted loss (STeW)
 - Uses pixel-level consistency as weight
- Cluster loss
 - K arbitrary clusters
 - Adjust centers using video features

$$\min_{\theta} \mathcal{L} = \mathcal{L}^{Cluster} + \mathcal{L}_{l}^{STeW} + \mathcal{L}^{Cls}$$

Intra-sample selection

- Frame-level selection
- Uncertainty based score
- Distance based redundancy reduction
- Top *t* frames used for video score

Inter-sample selection

- Video-level selection
- Video score from intra-sample
- Cluster assignment per video
- Top V videos per cluster selected
 - Frames from intra-sample

UCF Center for Research In Computer Vision

Datasets

- UCF-101
 - 3207 videos
 - 24 action classes
 - Spatio-temporal bounding box annotation
- J-HMDB
 - 928 videos
 - 21 action classes
 - Spatio-temporal pixel-wise annotation

Comparing with baselines

		UCF-101-24		J-HMDB-21	
Method	$\mathcal{A}\%$	v-mAP	f-mAP	v-mAP	f-mAP
Random	1%	52.6	54.1	36.6	42.1
Equi.	1%	53.3	55	38.1	43.5
Entropy [1] †	1%	52.2	53.5	40.7	49.0
Uncertainty [14] †	1%	44.0	46.7	46.0	47.9
Our	1%	61.8	61.6	58.6	61.9
Random	5%	67.5	67.3	69.3	70.1
Equi.	5%	67.2	67.0	70.0	70.4
Entropy [1] †	5%	71.3	70.2	70.7	70.8
Uncertainty [14] †	5%	69.7	68.2	69.0	69.3
Our	5%	72.2	72.1	71.3	72.7

Comparing with prior weakly-supervised

Method	$\mathcal{A}\%$	f-mAP@	v-mAP@			
		0.5	0.1	0.2	0.3	0.5
Mettes et al. [40]	V	-	-	37.4	-	-
Escorcia et al. [12]	V	-	-	45.5	-	-
Zhang et al. [67]	V	30.4	62.1	45.5	-	17.3
Arnab et al. [3]	V	-	-	61.7	-	35.0
Mettes et al. [39]	Р	-	-	41.8	-	-
Cheron et al. [9]	Р	-	-	70.6	-	38.6
Weinz. et al. [64]	1.1%	-	-	57.1	-	46.3
Weinz. et al. [64]	2.8%	63.8	-	57.3	-	46.9
MixMatch [5]	S-20%	20.2	-	60.2	-	13.8
Pseudo-label [32]	S-20%	64.9	-	93.0	-	65.6
Co-SSD(CC) [24]	S-20%	65.3	-	93.7	-	67.5
Kumar et al. [31]	S-20%	69.9	-	95.7	-	72.1
Ours	1%	61.6	98.1	95.9	88.9	61.8
Ours	5%	72.1	98.1	96.1	91.2	72.2

Method	$\mathcal{A}\%$	f-mAP@	v-mAP@			
		0.5	0.1	0.2	0.3	0.5
Zhang et al. [67]	V	65.9	81.5	77.3	-	50.8
Weinz. et al. [64]	6%	50.7	-	-	-	58.5
Weinz. et al. [64]	15%	56.5	-	-	-	64.0
MixMatch [5]	S-30%	7.5	-	46.2	-	5.8
Pseudo-label [32]	S-30%	57.4	-	90.1	-	57.4
Co-SSD(CC) [24]	S-30%	60.7	-	94.3	-	58.5
Kumar et al. [31]	S-30%	64.4	-	95.4	-	63.5
Ours	1%	61.9	99.0	96.8	91.5	58.6
Ours	5%	72.7	99.1	97.3	94.8	71.3

J-HMDB-21

UCF-101-24

Action Detection Results

Soccer Juggling

Salsa Dancing

Floor Gymnastics

Horse Riding

Long Jumping

Red: GT **Blue:** Our detection

Cluster representation

Cluster effectiveness

Loss effectiveness

Selection method analysis

Summary

- Hybrid selection improves performance
 - Clustering-aware selection strategy
 - Reduces similar video
 - Enables inter-sample comparison
- STeW loss improves sparse label training

Thank You

Project Link: https://tinyurl.com/hybridclaus

