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1 Introduction

Input: Any coordinate in the 

imaging data coordinate 

system, i.e. the coordinate of 

a voxel.

Parameterized
Neural Networks

Output: The value of 
the imaging data 
corresponding to this 
coordinate, i.e. the 
intensity value of a voxel.

Traditional discrete
grid representation

Continuous parameterization

✓ Not limited by grid resolution

✓ Simulation of details in the signal

✓ Modeling the higher order 

derivative information contained 

in the natural signal

characteristics

Implicit Neural Representation, INR, is a promising compressor

➢ Treat the data as the result of sampling a continuous function.

➢ Use a neural network to parameterize the function to represent the data.



1 Introduction

INR is limited confronted with large sized data

➢ INR is intrinsically of limited spectrum coverage and cannot envelop the spectrum 

of the target data.

➢ Two pioneering works using INR for data compression, including NeRV and SCI

have attempted to handle this issue in their respective ways.

➢ Introduces the convolution operation into INR.

✓ Reduces the required number of parameters 

using the weight sharing mechanism. 

X Convolution is spatially invariant and thus 

limits NeRV's representation  accuracy on 

complex data with spatial varying feature 

distribution. 

NeRV SCI

➢ Adopts divide-and-conquer strategy and partitions 

the data into blocks within INR's concentrated 

spectrum envelop.

✓ Improves the local fidelity. 

X Cannot remove non-local redundancies for higher 

compression ratio and tend to cause blocking 

artifacts. 



1 Introduction

We introduce TINC: Tree-structured Implicit Neural Compression

➢ We propose to build a tree-structured Multi-Layer Perceptrons (MLPs), which 

consists of a set of INRs to represent local regions in a compact manner and 

organizes them under a hierarchical architecture for parameter sharing and 

higher compression ratio. 



1 Introduction

TINC outperforms the SOTAs under high compression ratios

➢ Using the massive and diverse biomedical data, we conduct extensive 

experiments to validate that TINC greatly improves the capability of INR and even 

outperforms the commercial compression tools (H.264 and HEVC) under high 

compression ratios. 



1 Introduction

6

Biomedical Imaging

➢ Visualization of organisms at different scales of cells, tissues and organs using 

various imaging techniques.



1 Introduction

➢ High sampling rate: for capturing minute 

structural details, providing higher spatial resolution.

➢ High imaging speed: for capturing rapid dynamic 

changes, providing higher temporal resolution.

➢ High dimensionality: for representing information 

including spatial location, time series, etc.

➢ Large volume: terabytes or even petabytes of data.

challenges of compressors

characteristics

How to design high compression rate biomedical imaging data compressor,
for efficient storage, transmission and analysis of biomedical data?

➢ Storage: reduce storage costs, and avoid 

experimental data loss

➢ Transmission: reduce transmission costs, 

promote experimental data sharing.

➢ Analysis: reduce I/O pressure, reduce 

storage space during analysis, improve 

analysis efficiency, and accelerate scientific 

discovery.

needs

Biomedical imaging data characteristics, needs and challenges of compressors
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2 Method

Ensemble of Implicit Neural Compressors

➢ We borrow the idea of ensemble learning to 

partition the target volume into blocks and use 

multiple less expressive                      to achieve a 

powerful representation.

➢ We adopt the divide-and-conquer strategy to 

ensemble all implicit functions that represents 

data at its corresponding coordinate region.

optimization problem



2 Method

Hierarchical Parameter Sharing Mechanism

➢ We let these            share their neural network 

parameters hierarchically with each other 

according to the spatial distance between 

corresponding regions.

➢ for a leaf node at level l, its corresponding MLP-

implemented hidden layers can be divided into l 

segments, i.e.

➢ The sharing mechanism is defined on the octree 

structure. For example, if       and        share the 

same ancestor nodes at 1~3 levels, three pairs 

of hidden layer segments                                      

will share the same parameters. 



2 Method

Tree-structured Network Architecture

➢ We propose a tree-structured MLP based on the 

L level octree partitioning.

➢ Each node contains a hyper layer consisting of 

some fully connected layers and takes the 

output of its parent node's hyper layer as input.

➢ Root node and leaf nodes additionally contain 

the input and output layers respectively.

✓ The output information of the leaf node is 

processed by the hyper layers in its ancestor 

nodes.

✓ At the same level, all sibling nodes share the 

same parent node and thus take the same 

information as input.



3 Experiments

Performance Comparison with SOTAs

# Best                 

⚫ Second best

TINC outperforms the SOTAs under high compression ratios



3 Experiments

Performance Comparison with SOTAs

✓ Avoids blocking artifacts at the boundary✓ Outperforms the SOTAs



3 Experiments

Flexibility Settings for Different Data

➢ We also analyze TINC’s flexibility to different cases 

via experimentally studying the effect of three key 

settings:

1. number of tree levels

2. intra-level parameter allocation 

3. inter-level parameter allocation ✓ Inter-level Parameter Allocation

✓ Setting of Tree Levels L ✓ Intra-level Parameter Allocation



4 Conclusion

Limitations and Future Extensions

➢ Similar to all current  INR based compression methods, TINC is of high 

decompression speed but slow in compression, since it takes time to pursue the 

MLPs matching the target data. 

➢ We plan to combine meta-learning to find the best initialization parameters for 

each organ to speed up TINC.
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