Language in a Bottle: Language Model Guided Concept Bottlenecks for Interpretable Image Classification

Yue Yang, Artemis Panagopoulou, Shenghao Zhou, Daniel Jin, Chris Callison-Burch, Mark Yatskar

University of Pennsylvania

End-to-end Neural Models

Input Image *x*

Black Box

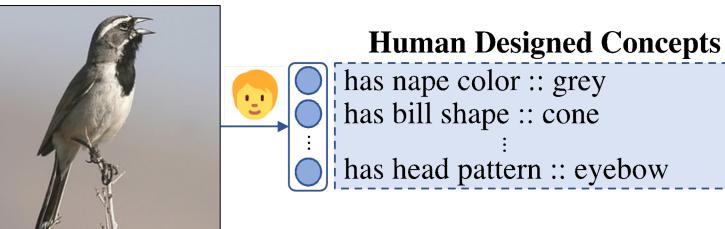
 \rightarrow **label** *y* (black-throated sparrow)

Concept Bottleneck Models (CBM)

Koh et al., *Proceedings of the 37th International Conference on Machine Learning,* 2020

ŷ

Input Image *x*



- Challenges:
 - Require heavy human annotation.
 - Underperform end-to-end models.

Language Model Guided Concept Bottlenecks

Input Image *x*

Ours: LLM Generated Concepts black throat with a white boarder brown head with white stripes grayish brown back and wings prompt: describe what the *black-throated sparrow* looks like:

Prompt LLM to generate concepts

class 1-axolotl

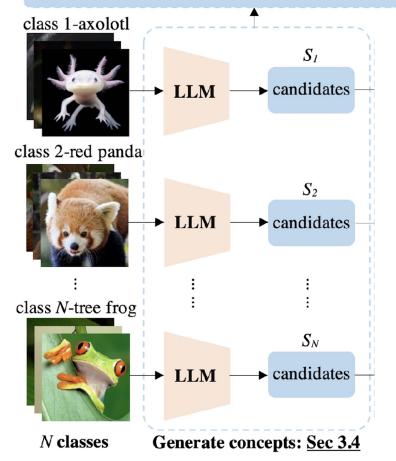
class 2-red panda

: class *N*-tree frog

N classes

Submodular Concept Selection

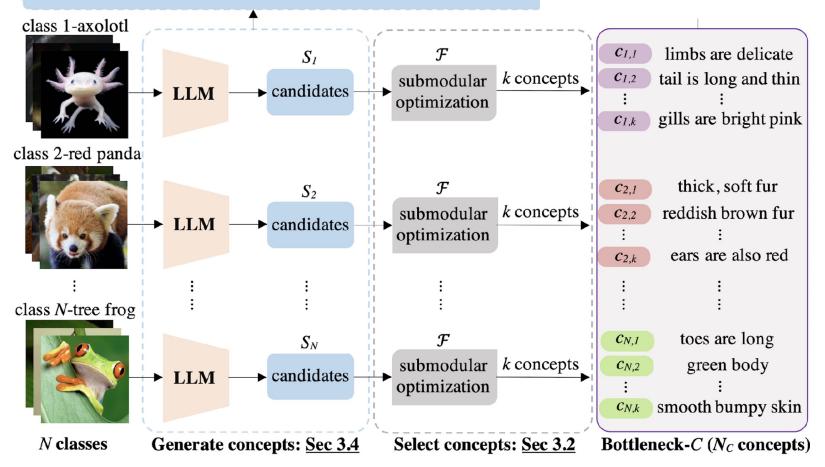
prompt: describe what the *axolotl* looks like:
LLM: The axolotl's limbs are delicate, and the tail is long and thin.
Extract concept using LM and delete class names:
Candidate concepts: limbs are delicate; tail is long and thin



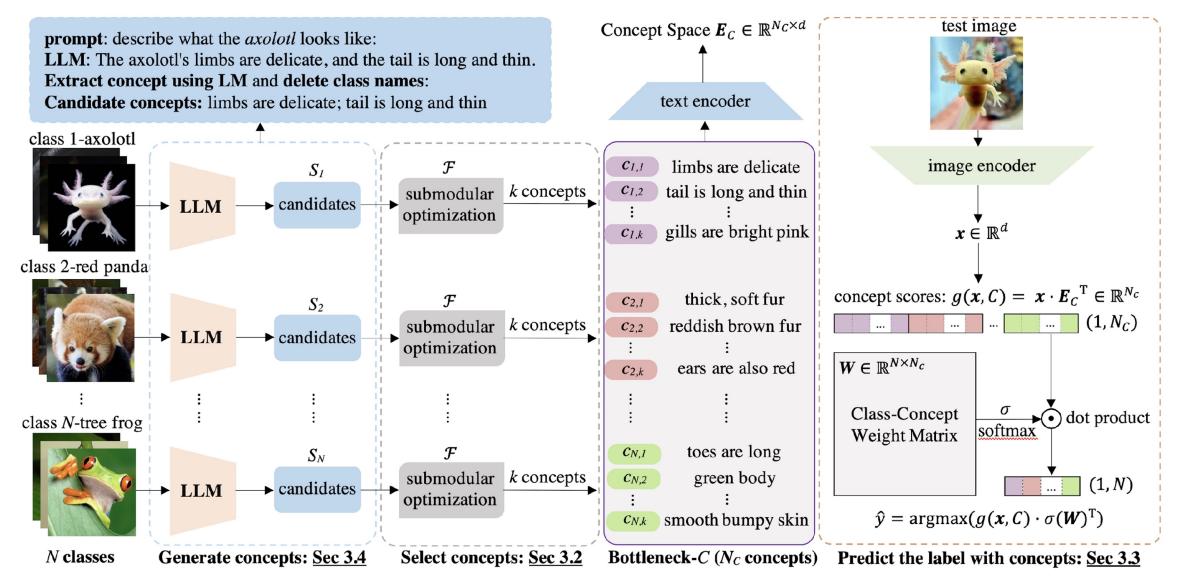
- Ensure the concepts selected for the bottleneck are **discriminative** and **diverse**.
 - General concepts: This is an animal.
 - *Repetitive concepts*: Gills are bright pink./ Pink gills.

Compute Concept Scores

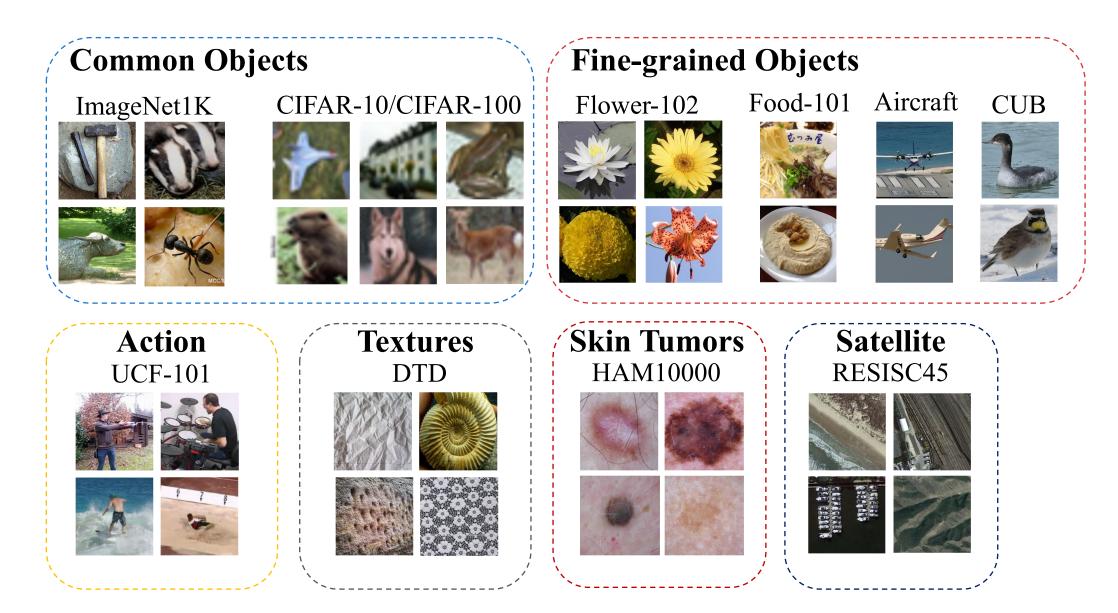
prompt: describe what the *axolotl* looks like:
LLM: The axolotl's limbs are delicate, and the tail is long and thin.
Extract concept using LM and delete class names:
Candidate concepts: limbs are delicate; tail is long and thin



Predict the Target



Datasets



Experimental Setup

- Baselines:
 - Linear Probe: logistic regression on the image features.
 - PCBM: Post-hoc CBM (Yuksekgonul et al., 2022)
 - Ensemble CBM prediction with end-to-end prediction.
 - ComDL: Compositional Derivation Learning (Yun et al., 2022)
 - Human designed concepts.
 - Linear layer over CLIP similarity scores.
- Few-shot/Fully-supervised.
- Metric: accuracy.

Comparison with Blackbox Model

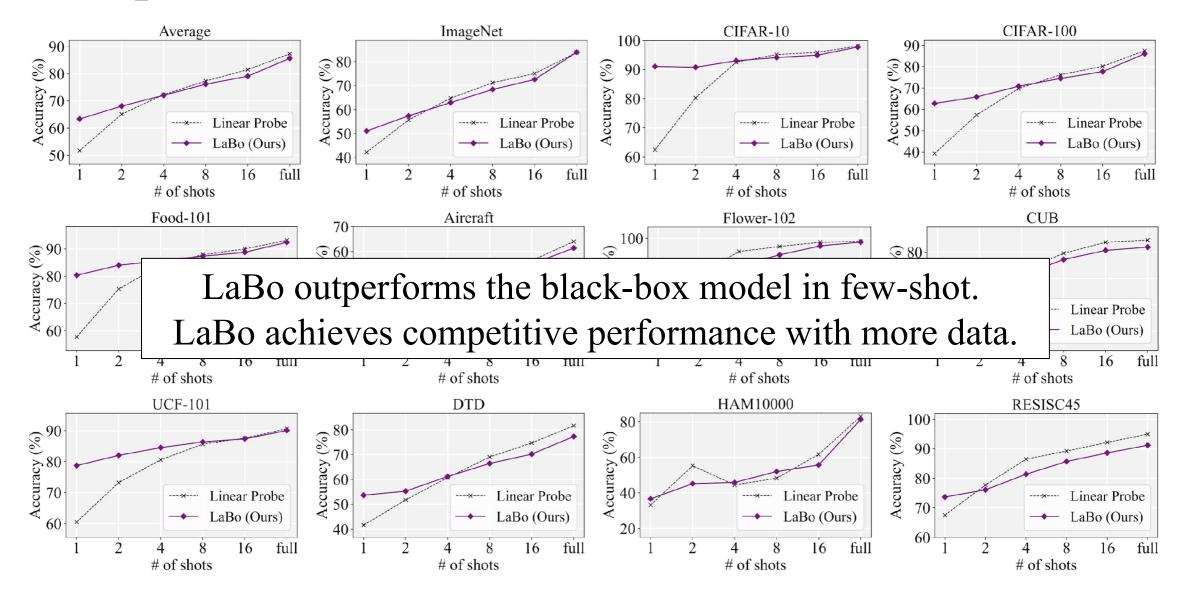


Figure 3. Test accuracy (%) comparison between LaBo and Linear Probe on 11 datasets. The x-axis represents the number of labeled images.

Comparison with Previous CBMs

Method	w/ end-to-end	CIFAR-10	CIFAR-100
PCBM [66]	×	84.5	56.0
LaBo (Ours)	×	87.9	69.1
PCBM-h [66]	✓	87.6	69.9
Linear Probe	✓	88.8	70.1

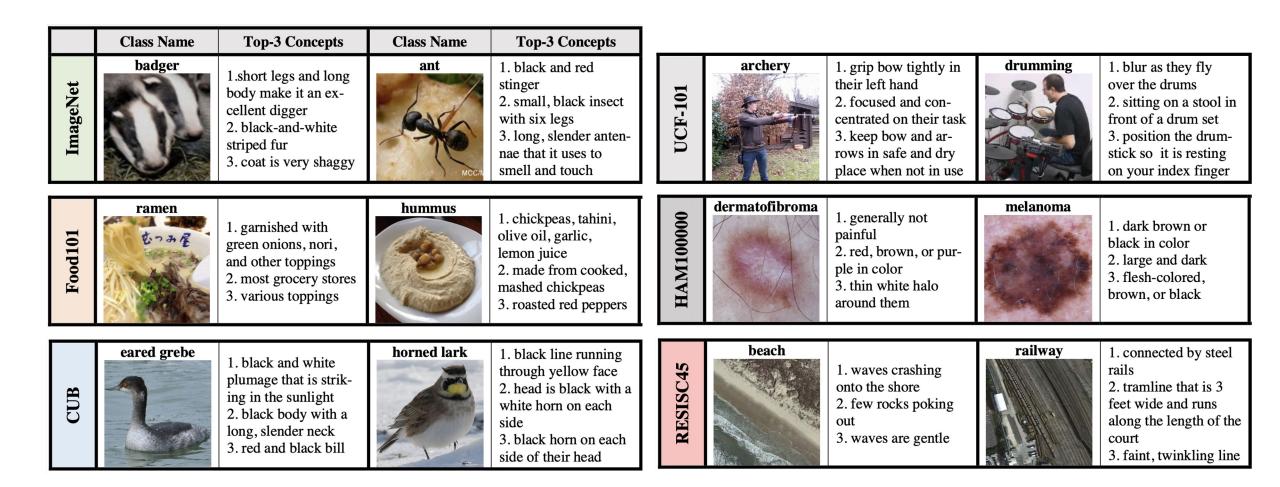
LaBo doesn't rely on black box predictor. LaBo doesn't require human annotations.

residual predictor from image features to targets.

Method	w/ manual concepts	1	5	Full
CompDL [67]	\checkmark	13.6	33.2	52.6
LaBo (Ours)	×	35.1	55.7	71.8
Linear Probe	-	28.4	55.4	75.5

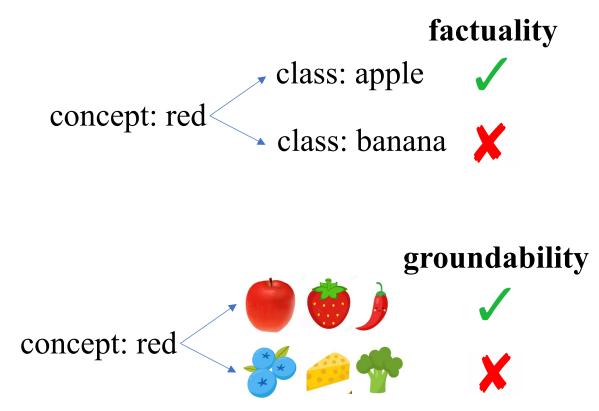
Table 3. LaBo and CompDL evaluated on CUB for 1/5/full shots.

Qualitative Results



Human Evaluation

- Metrics:
 - Factuality: how accurately the concepts describe their designated class.
 - Groundability: how consistent the model grounds the concepts to images.

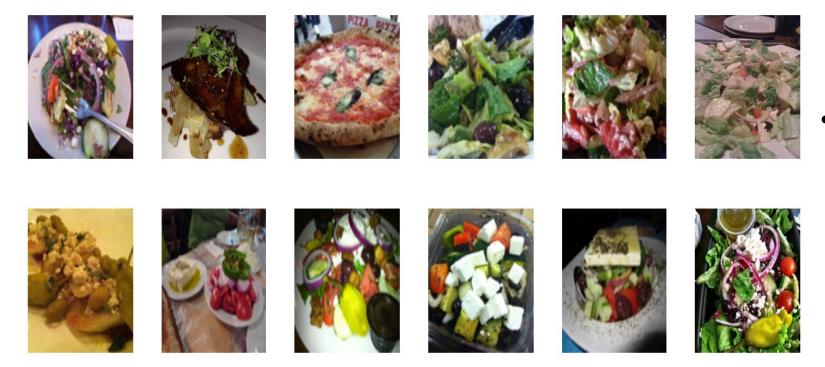


Human Evaluation

feta cheese and kalamata olives

 $Factuality(c) = \frac{\text{number of images selected}}{k \text{ ground truth images of the class}}$

 $Groundability(c) = \frac{\text{number of images selected}}{\text{top-}k \text{ aligned images of the concept}}$



• Invalid Concepts

- Non-sensical
- Unknown vocabulary
- Non-visual

If you think that this concept is not good for singling out relevant images, select one or more of the following reasons (if any).

🗌 Non-sensical or ungramatical. 📃 Unknown vocabulary 📃 Non visual phrase.

Human Evaluation

- Compare with concepts from <u>human-written</u> text:
 - WordNet definition.
 - Wikipedia sentences (Kil and Chao, 2021).

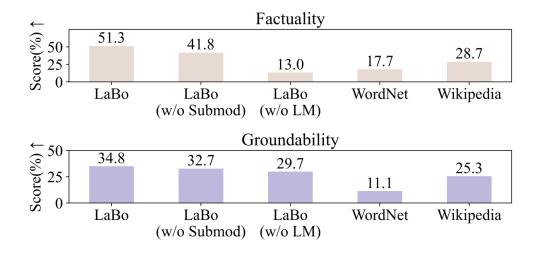


Figure 5. Human evaluation on *Factuality* and *Groundability* for different bottlenecks on ImageNet. "w/o Submod" denotes without submodular function, i.e., random concept selection. "w/o LM" denotes no language prior weight initialization.

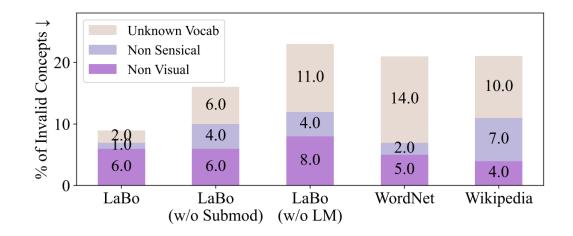


Figure 6. Percentage of invalid concepts identified by humans for different bottlenecks on ImageNet. Lower percentage is better.

Conclusion

- We demonstrate that the accuracy and interpretability of vision systems may be less at odds than previously believed.
- Leveraging LLMs was crucial, as they encode important visual knowledge.
- In the future, our approach can easily be enriched with new factors that capture different priors on bottleneck construction.

Thank you!