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Overview

GLMC Core Idea:

➢ A Global and Local Mixture Consistency Loss  improves the robustness 

of the feature extractor.

➢ A Cumulative Head-tail Soft Label Reweighted Loss mitigates the head 

class bias problem.
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Related Work

Stop-grad

➢ Contrastive Representation Learning for long-tail recognition

similarity

Target:

• To obtain a balanced representation space

Drawback:

• A multi-stage pipeline 

• Large batches of negative examples for training

• Extensive training skills and memory overhead

➢ Class Rebalance learning

Target:

• To strengthen the tail class by oversampling  or increasing weight.

Drawback:

• over-learning the tail class may increase the risk of overfitting

• under-sampling or reducing weight in the head class inevitably sacrifice the performance of head classes.



Global and Local Mixture Consistency Learning

Global Mixture:

𝜆 ~ 𝐵𝑒𝑡𝑎(𝛽, 𝛽)

෤𝑥𝑔 = 𝜆𝑥𝑖 + 1 − 𝜆 𝑥𝑗

෤𝑝𝑔 = 𝜆𝑝𝑖 + 1 − 𝜆 𝑝𝑗

Local Mixture:

෤𝑥𝑙 = 𝑀⊙ 𝑥𝑖 + 1 −𝑀 ⊙ 𝑥𝑗

𝑟𝑥 ~ 𝑈𝑛𝑖𝑓𝑜𝑟𝑚 0,𝑊 , 𝑟𝑤 = 𝑊 1 − 𝜆

𝑟𝑦 ~ 𝑈𝑛𝑖𝑓𝑜𝑟𝑚 0,𝐻 , 𝑟ℎ = 𝐻 1 − 𝜆

• A stochastic mixed-label data augmentation module Au𝑔(𝑥, 𝑦). For each input batch samples, Au𝑔 𝑥, 𝑦 transforms 𝑥 and their labels 

𝑦 in global and local augmentations pairs, respectively.



Global and Local Mixture Consistency Learning
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we calculate the mixed-label cross-entropy loss:



Experiments

Top-1 accuracy (%) on full CIFAR-10 and CIFAR-100 

dataset with ResNet-50 backbone.

Top-1 accuracy (%) on full ImageNet dataset with

ResNet-50 backbone.

◆ Full ImageNet and CIFAR Recognition



Cumulative Class-Balanced Learning

Weighting factor: Mixing weight vectors of the two images:

• A linear rebalanced classifier head 𝑐𝑏(𝑥) that maps vectors r to rebalanced category space. The rebalanced classifier calculates 

mixed cross entropy loss with the reweighted data distribution.

෥𝑤 = 𝜆𝑤𝑖 + 1 − 𝜆 𝑤𝑗𝑤𝑖 =
𝐶 ⋅ Τ1 𝑟𝑖
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Cumulative Class-Balanced Learning

𝛼 = 1 −
𝑇

𝑇𝑚𝑎𝑥

2

ℒ𝑡𝑜𝑡𝑎𝑙 = 𝛼ℒ𝑐 + 1 − 𝛼 ℒ𝑐𝑏 + 𝛾ℒ𝑠𝑖𝑚



Experiments

Top-1 accuracy (%) of ResNet-32 on CIFAR-10-LT and CIFAR-100-LT with different imbalance factors [100, 50, 10]. GLMC 

consistently outperformed the previous best method only in the one-stage.



Experiments

Top-1 accuracy (%) on ImageNet-LT dataset. Comparison to the state-of-the-art methods with different backbone. 

† denotes results reproduced by BCL with 180 epochs.



Ablation studies

Ablations of the different key components of GLMC architecture. We report the accuracies (%) on 

CIFAR100-LT (IF=100) with ResNet-32 backbone. Note that all model use one stage training.



Ablation studies

Confusion matrices of different label reweighting and resample 

coefficient k on CIFAR-100-LT with an imbalance ratio of 100.

Different global and local mixture consistency weights on 

CIFAR-100-LT (IF = 100).



Thanks for listening!
https://github.com/ynu-yangpeng/GLMC

https://github.com/ynu-yangpeng/GLMC
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