

Paper ID: TUE-PM-239

Decoupled Multimodal Distilling for Emotion Recognition

Yong Li, Yuanzhi Wang, Zhen Cui Nanjing University of Science and Technology, Nanjing, China.

{yong.li, yuanzhiwang, zhen.cui}@njust.edu.cn

Fig 1. Decoupled and Graph-empowered knowledge distillation for multimodal emotion recognition.

Background

• Multimodal Emotion Recognition (MER)

Multimodal emotion recognition (MER) aims to perceive the emotion of humans from video clips.

Video clips involve multimodal temporal data, e.g., natural language, visual actions and acoustic behaviors.

Fig 2. Typical MER pipeline.

Background

• Typical previous methods for MER

Multimodal Transformer

ACL, 2019 [1]

Progressive Modality Reinforcement *CVPR, 2021 [3]*

2. Motivation

• Towards small unimodal performance discrepancies

Fig 3. Unimodal accuracy comparison.

- The inherent **multimodal heterogeneities** exist
- The contribution of different modalities varies significantly
	- **Language** excels as it can benefit from a pre-trained model, e.g., BERT
	- **Language** is descriptive, sparse, intrinsically semantic
	- **Vision**/image is redundant
	- **Audio** is quite weak with few semantics

2. Motivation

• Towards small unimodal performance discrepancies

Conventional cross-modal distillation mechanism has **drawbacks**:

- Distillation **direction or weights** are **cumbersome**
- Multimodal feature **distribution mismatch** hinders the distillation

effects

Fig 4. Conventional knowledge distillation for MER.

2. Motivation

• Towards small unimodal performance discrepancies

Decoupled multimodal distillation mechanism has benefits:

• Distillation direction and weights can be adaptively

learned

• Multimodal heterogeneity can be mitigated via feature decoupling

Fig 5. Our proposed Decoupled Multimodal Distillation.

Feature Decoupling

• Two-level Self-supervised

Constraints.

Margin-based contrastive loss.

Decompose multimodal feature into homo-/ hetero-geneous spaces.

• Graph-empowered KD in Homo- space

Fig 7. Homogeneous Knowledge Distillation with a Graph Distillation Unit.

In *homo- space*, KD can be conduct directly.

Graph Distillation:

- Graph *node*: multimodal feature.
- Graph *edge*: distillation direction and weight.

• Graph-empowered KD in Hetero- space

In *hetero- space*, KD should be performed after multimodal feature adaptation.

Fig 8. Heterogeneous Knowledge Distillation with a GD-Unit.

• Graph-empowered KD

Notations:

- A GD-Unit consists of a directed **graph** \mathcal{G}
- **Node** v_i denotes a modality
- $w_{i\rightarrow j}$ indicates distillation strength from **i** to **j**
- $\epsilon_{i \to j}$ denotes distillation loss. For a target modality, the weighted distillation loss is:

$$
\zeta_{:j} = \sum_{v_i \in \mathcal{N}(v_j)} w_{i \to j} \times \epsilon_{i \to j}
$$

Learnable Graph Edge:

The graph **edge** $w_{i \rightarrow j}$ means distillation strength. We encode the modality logits and the features into the graph edges: $w_{i\rightarrow j} = g([[f(\mathbf{X}_i, \theta_1), \mathbf{X}_i], [f(\mathbf{X}_j, \theta_1), \mathbf{X}_j]], \theta_2)$

Benefits of Graph-empowered KD:

- **Learnable** KD strength
- **Adjustable** KD direction

- **Datasets**
	- **CMU-MOSI^[4]** is a MER dataset consisting of 2,199 short monologue video clips (each lasting the duration of a sentence).
	- **CMU-MOSEI[5]** is a larger MER dataset, which contains more than 23,500 sentence utterance videos from more than 1000 online YouTube speakers**.**

Fig 9. Example face illustration in CMU-MOSEI dataset.

• Numeric comparisons

CMU-MOSI CMU-MOSEI

Fig 10. **DMD** consistently obtains **superior** MER accuracy.

• **Homo**geneous Feature Visualization

Fig 11. **DMD** shows the promising **emotion category separability** in sub-figure (c).

Heterogeneous Feature Visualization

Fig 12. We randomly selected 400 samples for t-SNE visualization.

DMD shows the best **modality separability** in sub-figure (c).

- In the two decoupled spaces, $L \rightarrow$ A and $L \rightarrow V$ dominates because language contributes most.
- In HeteroGD, $V \rightarrow A$ emerges

because vision is enhanced a lot via the multimodal transformer

mechanism.

Fig 13. Six graph edge visualization for each MER dataset.

• **Attention** Visualization

Fig 14. In the **top** row, DMD builds reliable correlations between elements across modalities.

5. Conclusion

- We have proposed a Decoupled Multimodal Distillation (DMD) for MER.
- DMD decouples the multimodalities into *homo*geneous and *hetero*geneous spaces.
- DMD exploits **graph-empowered Knowledge Distillation** for robust MER.

```
Thanks for 
   your 
attention!
```
Public Code:

https://github.com/mdswyz/DMD

6. Reference

- [1] Tsai *et al*. Multimodal transformer for unaligned multimodal language sequences. ACL, 2019
- [2] Hazarika *et al*. Misa: Modality-invariant and-specific representations for multimodal sentiment analysis. MM. 2020
- [3] Lv *et al*. Progressive modality reinforcement for human multimodal emotion recognition from unaligned multimodal sequences. CVPR, 2021
- [4] Zadeh *et al*. Multimodal sentiment intensity analysis in videos: Facial gestures and verbal messages. IEEE Intelligent Systems, 2016
- [5] Zadeh *et al*. Multimodal language analysis in the wild: Cmu-mosei dataset and interpretable dynamic fusion graph. ACL, 2018