

Practical Network Acceleration with Tiny Sets

Guo-Hua Wang, Jianxin Wu

State Key Laboratory for Novel Software Technology, Nanjing University

Presentation Date: June 22, 2023

Poster Number: 366

Tag: THU-AM-366

Summary

- Problem
 - How to accelerate deep networks (CNNs) with a tiny training set (50~1000 images)?
- The proposed method
 - Drop blocks: an embarrassingly simple but powerful few-shot compression method
 - Recoverability: measure the difficulty of recovering each block, and in determining the priority to drop blocks.
 - **PRACTISE**: the algorithm for accelerating networks

Few-shot compression

- Network compression
 - The original training set
- Few-shot compression
 - To preserve data privacy and/or to achieve fast deployment
 - A tiny training set

Related works and their problems

- Pruning filters
 - Suffer from a low acceleration ratio
 - Need to reduce lots of FLOPs
 - Require lots of training data
- Focus on the FLOPs-accuracy tradeoff and neglect the latency-accuracy tradeoff

Drop blocks

- Accelerate networks by dropping blocks
 - High acceleration ratio
 - High accuracy

The recoverability

31

26

ayer1.1 layer1.2 layer2.2 layer2.3

layer2.1

5

layer3.5

layer4.2

layer4.1

layer3.2 layer3.3 layer3.4

ayer3.

Criteria for dropping blocks

- The framework to compute the recoverability ۲
 - Inserting adaptors to recover the performance ۲
 - Consistent with the finetuned accuracy ٠

PRACTISE

PRACTISE: <u>Practical network acceleration with tiny sets of images</u>

Algorithm 1: PRACTISE

Input: The original model \mathcal{M}_O , the number of dropped blocks k, the tiny training data \mathcal{D}_T Test the latency of \mathcal{M}_O ; for each block \mathcal{B}_i do Drop \mathcal{B}_i to obtain the pruned model $\mathcal{M}_{P(\mathcal{B}_i)}$; Test latency of $\mathcal{M}_{P(\mathcal{B}_i)}$ and find $\tau(\mathcal{B}_i)$ (Eq. 2); Insert adaptors; Compute $\mathcal{R}(\mathcal{B}_i)$ with \mathcal{D}_T (Eq. 1); Compute the score $s(\mathcal{B}_i)$ (Eq. 3); Add \mathcal{B}_i back and remove all adaptors;

Choose the top k blocks with the minimum scores; Drop these k blocks to obtain \mathcal{M}_P ; Finetune \mathcal{M}_P with \mathcal{D}_T by minimizing \mathcal{L} (Eq. 4); **return** The pruned model \mathcal{M}_P

$$\tau(\mathcal{B}_i) = \frac{lat_{\mathcal{M}_O} - lat_{\mathcal{M}_P(\mathcal{B}_i)}}{lat_{\mathcal{M}_O}}, \qquad (2)$$

$$\mathcal{R}(\mathcal{B}_i) = \min_{\alpha} \mathbb{E}_{x \sim p(x)} \| \mathcal{M}_O(x; \theta) - \mathcal{M}_{P(\mathcal{B}_i)}(x; \theta \setminus b_i, \alpha) \|_F^2,$$
(1)

$$s(\mathcal{B}_i) = \frac{\mathcal{R}(\mathcal{B}_i)}{\tau(\mathcal{B}_i)}.$$
(3)

$$\mathcal{L} = \|\mathcal{M}_O(x;\theta_O) - \mathcal{M}_P(x;\theta_P)\|_F^2, \qquad (4)$$

Experiments

• Accelerate ResNet-34 on ImageNet-1k with tiny sets

Method	Latency (ms)	50	100	500	1000
BP (filter) BP (block)	35.1 (15.8%↓) 34.9 (16.3 %↓)	$39.0_{\pm 1.41}/68.9_{\pm 1.17}$ 66.5 _{± 0.81} / 78.4 _{± 0.44}	$41.0_{\pm 0.33}/70.5_{\pm 0.66}$ 66.8 _{±0.23} / 87.7 _{±0.23}	$51.8_{\pm 0.30}/78.1_{\pm 0.38}$ 68.6 $_{\pm 0.18}/$ 88.8 $_{\pm 0.09}$	$57.8_{\pm 0.30}/81.5_{\pm 0.18}$ 69.8 _{± 0.12} / 89.3 _{± 0.07}
KD [10]	35.1 (15.8%↓)	$44.5_{\pm 1.20}/72.3_{\pm 0.87}$	$46.4_{\pm 0.34}/74.0_{\pm 0.58}$	$54.7_{\pm 0.26}/79.7_{\pm 0.19}$	$57.9_{\pm 0.21}/81.6_{\pm 0.12}$
FSKD [12]	35.1 (15.8%↓)	$45.3_{\pm 0.77}/71.5_{\pm 0.62}$	$51.2_{\pm 0.30}/76.8_{\pm 0.23}$	$57.6_{\pm 0.21}/81.6_{\pm 0.15}$	$59.4_{\pm 0.13}/82.7_{\pm 0.06}$
CD [1]	35.1 (15.8%↓)	$56.2_{\pm 0.37}/80.8_{\pm 0.31}$	$59.1_{\pm 0.22}/82.8_{\pm 0.11}$	$63.7_{\pm 0.18}/86.0_{\pm 0.05}$	$64.4_{\pm 0.03}/86.3_{\pm 0.07}$
MiR [30]	35.1 (15.8%↓)	$64.1_{\pm 0.10}/86.3_{\pm 0.11}$	$65.1_{\pm 0.19}/87.0_{\pm 0.11}$	$67.0_{\pm 0.09}/88.1_{\pm 0.07}$	$67.8_{\pm 0.06}/88.5_{\pm 0.02}$
PRACTISE	34.9 (16.3%↓)	$70.3_{\pm 0.16}/89.6_{\pm 0.06}$	$71.5_{\pm 0.74}/90.3_{\pm 0.37}$	$72.5_{\pm 0.04}/90.9_{\pm 0.03}$	$72.5_{\pm 0.05}/91.0_{\pm 0.02}$

Method	Latency (ms)	50	100	500	1000
BP (filter) BP (block)	$33.8 (18.9\% \downarrow)$ $32.5 (22.1\% \downarrow)$	$\begin{vmatrix} 24.2_{\pm 0.92}/52.7_{\pm 1.36} \\ 60.6_{\pm 0.62}/83.5_{\pm 0.42} \end{vmatrix}$	$27.6_{\pm 0.41}/56.7_{\pm 0.62}$	$42.9_{\pm 0.28}/70.5_{\pm 0.27}$	$51.2_{\pm 0.32}/76.5_{\pm 0.16}$
DI (Olock)			01.0±0.31/04.0±0.36	0.19/000±0.20	0.18/0.12±0.13
KD [10]	$33.8(18.9\%\downarrow)$	$30.1_{\pm 0.69}/57.7_{\pm 1.10}$	$33.1_{\pm 0.43}/61.0_{\pm 0.53}$	$45.7_{\pm 0.26}/72.2_{\pm 0.25}$	$50.5_{\pm 0.29}/75.9_{\pm 0.23}$
FSKD [12]	$33.8(18.9\%\downarrow)$	$31.1_{\pm 0.90}/56.5_{\pm 1.10}$	$36.6_{\pm 0.44}/63.1_{\pm 0.46}$	$42.8_{\pm 0.49}/69.1_{\pm 0.58}$	$44.9_{\pm 0.20}/70.5_{\pm 0.29}$
MiR [30]	$33.8(18.9\%\downarrow)$	$59.9_{\pm 0.30}/83.2_{\pm 0.31}$	$62.1_{\pm 0.22}/84.8_{\pm 0.18}$	$65.4_{\pm 0.07}/87.0_{\pm 0.03}$	$66.6_{\pm 0.05}/87.7_{\pm 0.04}$
PRACTISE	32.5 (22.1 % ↓)	$68.0_{\pm 1.36}/88.2_{\pm 0.77}$	70.4 $_{\pm 0.42}/89.7_{\pm 0.23}$	$71.8_{\pm 0.07}/90.5_{\pm 0.02}$	$71.9_{\pm 0.05}/90.6_{\pm 0.04}$

Experiments

- The data-latency-accuracy tradeoff
- Accelerate MobileNetV2 on ImageNet-1k with tiny sets

Method	Latency (ms)	Top-1/Top-5		
Original	37.6	71.9/90.3		
BP (filter) KD [10] MiR [30] PRACTISE	$ \begin{vmatrix} 31.5 & (16.2\% \downarrow) \\ 30.4 & (\mathbf{19.1\%} \downarrow) \end{vmatrix} $	$\begin{array}{c} 45.0_{\pm 0.34}/71.8_{\pm 0.38}\\ 48.4_{\pm 0.34}/73.9_{\pm 0.32}\\ 67.6_{\pm 0.05}/87.9_{\pm 0.04}\\ 69.3_{\pm 0.05}/88.9_{\pm 0.05}\end{array}$		
BP (filter) KD [10] MiR [30] PRACTISE	$\begin{vmatrix} 34.1 & (9.3\% \downarrow) \\ 31.9 (\mathbf{15.2\%} \downarrow) \end{vmatrix}$	$\begin{array}{c} 55.5_{\pm 0.16}/80.3_{\pm 0.26}\\ 59.1_{\pm 0.17}/82.5_{\pm 0.15}\\ 69.7_{\pm 0.04}/89.2_{\pm 0.03}\\ \textbf{70.3}_{\pm 0.03}/\textbf{89.5}_{\pm 0.03}\end{array}$		

Experiments

- Zero-shot compression
- Accelerate ResNet-34 on out-of-domain training datasets

Network	Method	Pruning	Latency	Top-1
	Original		83.8	76.1
	DI [33]	DI [33] filter		72.0
PasNat 50	MixMix [14]	filter	-	69.8
Keshel-JU	ADI [33]	filter	-	73.3
	ADI* [33]	filter	79.9 (4.7%↓)	73.5
	PRACTISE	block	66.2 (21.0% \downarrow)	74.8
	Original		37.6	71.9
	DI [33]	filter	-	15.3
MobileNetV2	MixMix [14]	filter	-	42.5
	ADI* [33]	filter	30.8 (18.1%↓)	62.8
	PRACTISE	block	30.4 (19.1%↓)	68.0

Dateset	50	500	1000	5000	All
ImageNet [26]	74.22	74.58	74.58	75.14	75.24
ADI [33]	69.85	72.68	73.01	74.40	74.79
CUB [28]	72.49	73.71	73.94	74.86	74.92
Place365 [36]	72.80	74.10	74.18	75.05	75.21

Conclusions

- Argue that the FLOPs-accuracy tradeoff is a misleading metric for few-shot compression, and advocate that the latency-accuracy tradeoff is more crucial in practice.
- The first to reveal dropping blocks great potential in few-shot compression.
- Propose a new concept recoverability to measure the difficulty of recovering each block, and in determining the priority to drop blocks.
- Propose PRACTISE, an algorithm for accelerating networks with tiny sets of images.
- The extraordinary performance: For 22.1% latency reduction, PRACTISE surpasses the previous state-of-the-art (SOTA) method on average by 7.0%.

https://arxiv.org/abs/2202.07861

<u>https://github.com/DoctorKey/Practise</u>