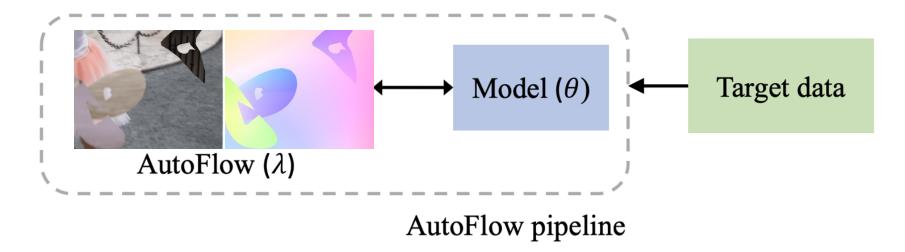


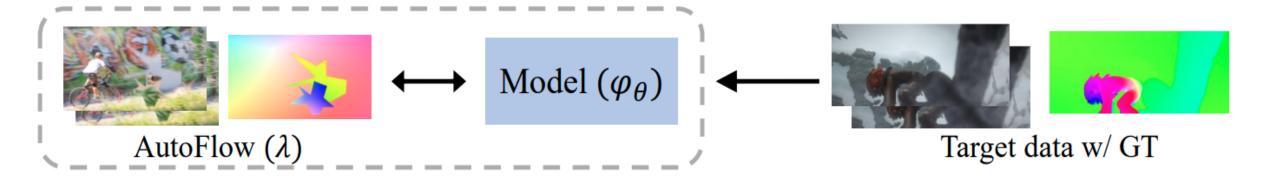
Hsin-Ping Huang^{1,2} Charles Herrmann¹ Junhwa Hur¹ Erika Lu¹ Kyle Sargent¹ Austin Stone¹ Ming-Hsuan Yang^{1,2} Deqing Sun¹

¹Google Research ²University of California, Merced

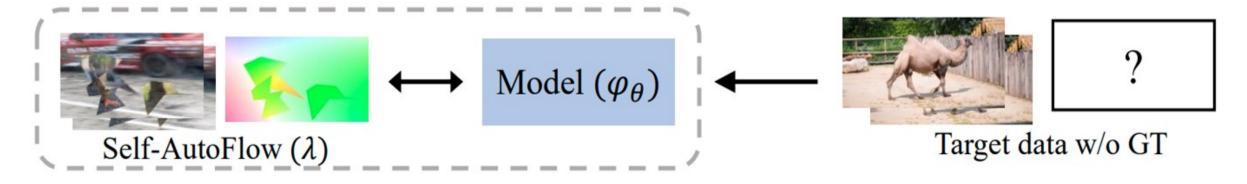


Poster: WED-AM-303 Webpage: autoflow-google.github.io Typical pipeline for learning optical flow

- Pretrain on large-scale synthetic datasets
- Issue: exist a domain gap between the synthetic and target data


AutoFlow: learning a training set for optical flow

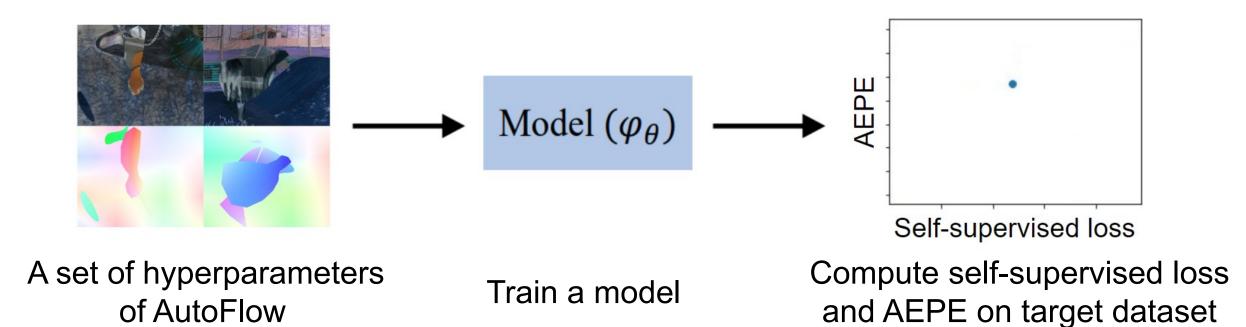
• Learn a training set to optimize performance on a target dataset


Sun et al. AutoFlow: Learning a Better Training Set for Optical Flow. CVPR 2021

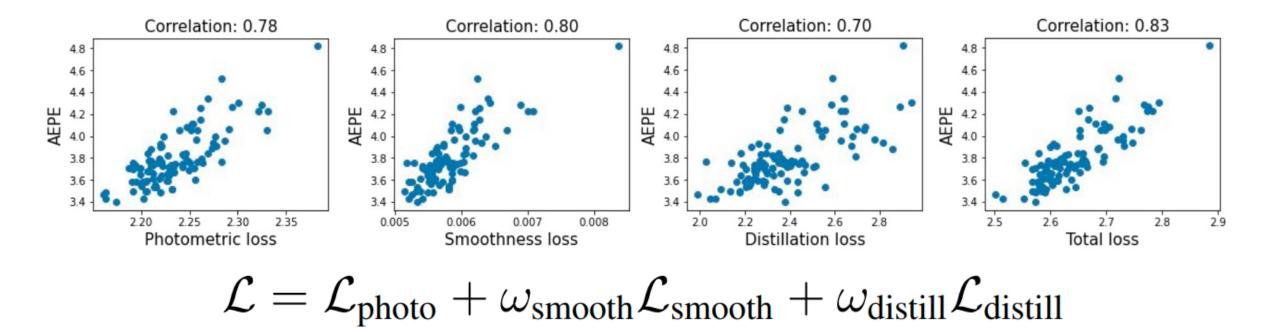
Issues: rely on ground truth from target domain

(Supervised) AutoFlow

Can we remove the reliance on ground truth?

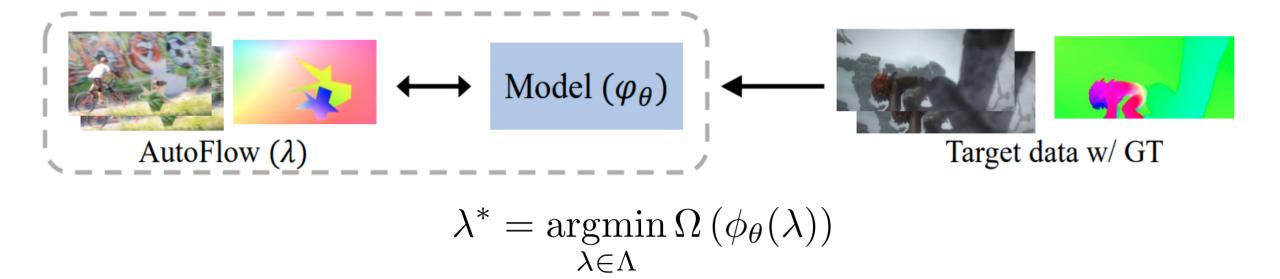


Self-supervised AutoFlow Self-supervised learning + learning to render

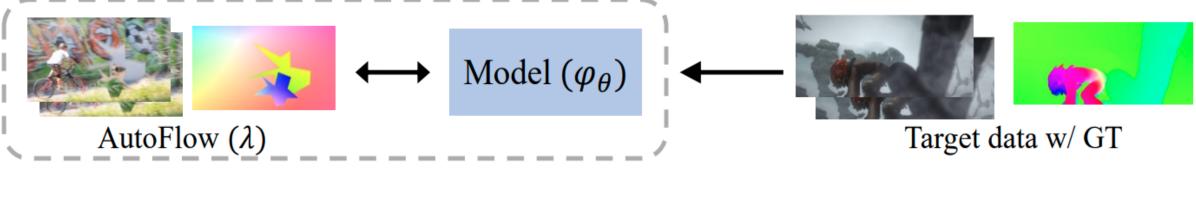

Self-supervised learning for optical flow

		Sintel Clean [3]		Sintel F	Sintel Final [3]		KITTI 2015 [22]			
		EPE		EI	EPE		EPEEPE (noc)ER in %		in %	
	Method	train	test	train	test	train	train	train	test	
Supervised in domain	FlowNet2-ft [9]	(1.45)	4.16	(2.01)	5.74	(2.30)	_	(8.61)	11.48	
	PWC-Net-ft [28]	(1.70)	3.86	(2.21)	5.13	(2.16)	-	(9.80)	9.60	
	SelFlow-ft [1/] (MF)	(1.68)	[3.74]	(1.77)	{4.26}	(1.18)	-	—	8.42	
	VCN-ft [37]	(1.66)	2.81	(2.24)	4.40	(1.16)	_	(4.10)	6.30	
	RAFT-ft [29]	(0.76)	1.94	(1.22)	3.18	(0.63)	-	(1.5)	5.10	
Supervised out of domain	FlowNet2 [9]	2.02	3.96	3.14	6.02	9.84	_	28.20	_	
	PWC-Net [28]	2.55	_	3.93	_	10.35	_	33.67	_	
	VCN [37]	2.21	_	3.62	_	8.36	_	25.10	_	
	RAFT [29]	1.43	-	2.71	_	5.04	-	17.4	-	
	EPIFlow [42]	3.94	7.00	5.08	8.51	5.56	2.56	_	16.95	
	DDFlow [16]	{2.92}	6.18	{3.98}	7.40	[5.72]	[2.73]	_	14.29	
Unsupervised	SelFlow [17] (MF)	[2.88]	[6.56]	{3.87}	{6.57}	[4.84]	[2.40]	_	14.19	
	UnsupSimFlow [10]	{2.86}	5.92	{3.57}	6.92	[5.19]	_	_	[13.38]	
	ARFlow [14] (MF)	{2.73}	{4.49}	{3.69}	{5.67}	[2.85]	_	_	[11.79]	
	UFlow [12]	3.01	5.21	4.09	6.50	2.84	1.96	9.39	11.13	
	SMURF-test (ours)	1.99	_	2.80	_	2.01	1.42	6.72		
	SMURF-train (ours)	{1.71}	3.15	{2.58}	4.18	$\{2.00\}$	{1.41}	{6.42}	6.83	

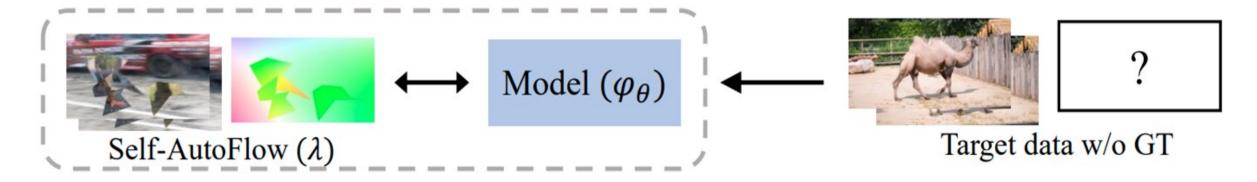
Are self-supervised losses related to ground truth errors?



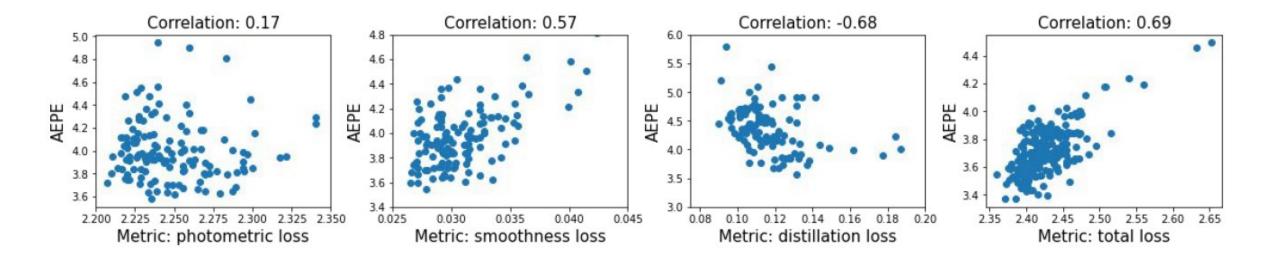
Are self-supervised losses related to ground truth errors?


• Strong correlation: self-supervised losses can be search metric for AutoFlow

AutoFlow


• Search for an optimal set of hyperparameters λ so that the optical flow network $\phi_{\theta}(\lambda)$ trained on the dataset rendered with λ minimize a search metric Ω on the target dataset

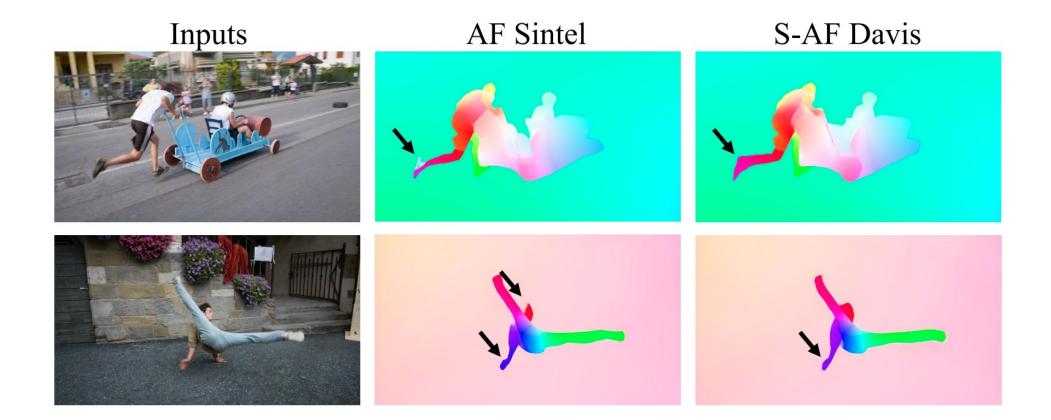
(Supervised) AutoFlow


 $\Omega_{\rm AF}(\phi_{\theta}(\lambda)) = {\rm AEPE}$

• Learn a training dataset to optimize the performance in the target domain with labels by minimizing the ground truth error

$$\Omega_{\text{S-AF}}(\phi_{\theta}(\lambda)) = \mathcal{L}_{\text{photo}} + \omega_{\text{smooth}} \mathcal{L}_{\text{smooth}} + \omega_{\text{distill}} \mathcal{L}_{\text{distill}}$$

• Learn a training dataset to approximately optimize the performance in the unlabeled target domain by minimizing the self-supervision metric



- Combination of three self-supervised signals acts as effective search metric
- Mixing data generated by top-3 hyperparameter sets increases robustness

Comparison of (self-)supervised pre-training approaches

Dataset and Method	Sintel Clean (AEPE ↓)	Sintel Final (AEPE ↓)	KITTI (AEPE ↓)
Supervised			
RAFT Chairs [43]	2.27	3.76	7.63
AF Sintel (3.2M) [40]	1.74	2.41	4.18
AF-mix Sintel (3.2M)	1.85	2.53	3.92
AF KITTI (0.8M) [41]	2.09	2.82	4.33
AF-mix KITTI (0.8M)	1.87	2.77	3.86
Self-supervised			
SMURF Chairs [38]	2.19	3.35	7.94
S-AF Sintel (3.2M)	1.83	2.59	5.22
S-AF KITTI (0.2M)	2.20	3.01	4.58
S-AF KITTI (0.8M)	1.99	3.00	4.29
S-AF KITTI (3.2M)	1.88	2.85	4.22

Results on Davis data w/o ground truth

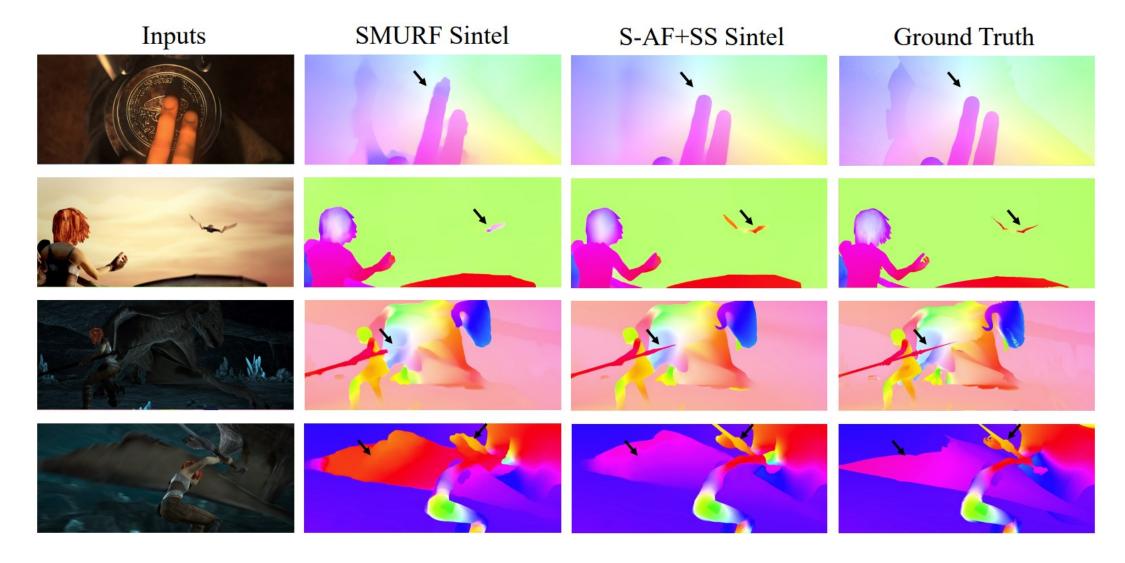
Combining S-AF with Self-supervised Optical Flow

Pre-training on Self-Autoflow

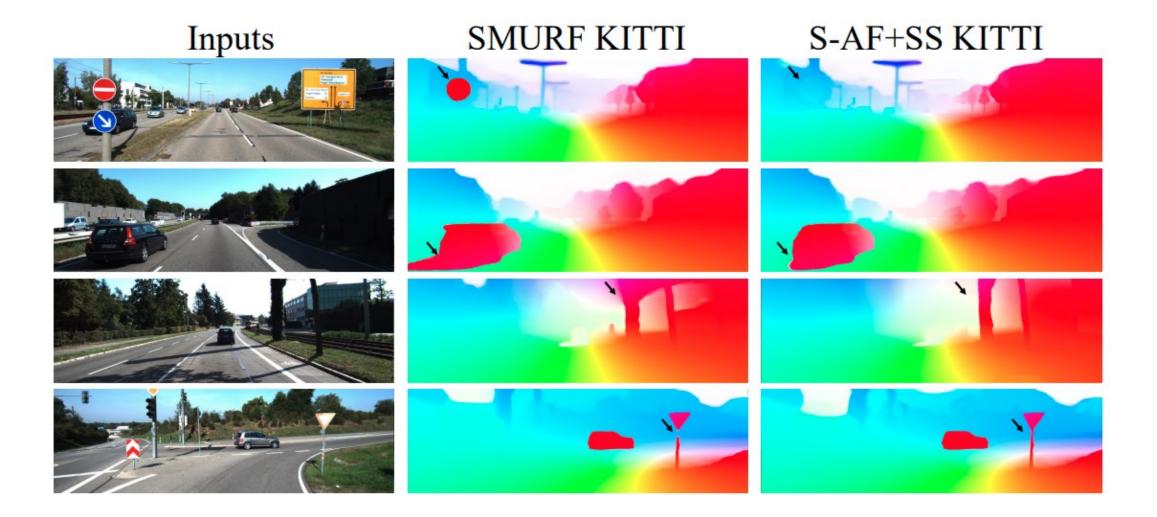
Self-supervised fine-tuning

$$\mathcal{L} = \mathcal{L}_{\text{photo}} + \omega_{\text{smooth}} \mathcal{L}_{\text{smooth}} + \omega_{\text{distill}} \mathcal{L}_{\text{distill}}$$

Multiframe fine-tuning

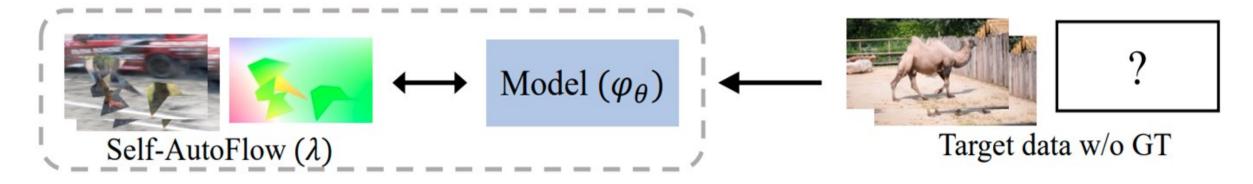

$$\mathcal{L} = \sum_{n} \gamma^{N-n} \rho_F(\mathbf{W}_{\text{pseudo}} - \mathbf{W}^n)$$

Stone et al. SMURF: Self-Teaching Multi-Frame Unsupervised RAFT with Full-Image Warping. CVPR 2021


Comparison of self-supervised learning approaches

	Sintel C	lean [4]	Sintel F	Sintel Final [4]		KITTI 2015 [28]				
	$\overline{\text{AEPE}\downarrow}$		AEI	$AEPE \downarrow$		$AEPE \downarrow AEPE (noc) \downarrow$		Fl-all (%)↓		
Method	train	test	train	test	trat	in	train	train	test	
EPIFlow [54]	3.94	7.00	5.08	8.51	5.5	6	2.56	_	16.95	
UFlow [20]	3.01	5.21	4.09	6.50	2.8	4	1.96	9.39	11.13	
SemiFlow [16]	1.30	_	2.46	_	3.3	5	_	11.12	_	
SMURF test [38]	1.99	_	2.80	-	2.0	1	1.42	6.72	_	
S-AF+SS test	1.65	_	2.40	_	1.9	4	1.37	6.56	_	
DDFlow [24]	{2.92}	6.18	{3.98}	7.40	[5.7	2]	[2.73]	_	14.29	
SelFlow [25] (MF)	[2.88]	[6.56]	{3.87}	$\{6.57\}$	[4.8	4]	[2.40]	-	14.19	
UnsupSimFlow [15]	{2.86}	5.92	{3.57}	6.92	[5.1	9]	_	-	[13.38]	
ARFlow [23] (MF)	{2.73}	{4.49}	{3.69}	{5.67}	[2.8	5]	_	_	[11.79]	
RealFlow [9]	{1.34}	_	{2.38}	_	{2.1	6}	_	_	_	
SMURF train [38]	{1.71}	3.15	$\{2.58\}$	4.18	{2.0	$0\}$	{1.41}	{6.42}	6.83	
S-AF+SS train	{1.51}	3.02	{2.30}	3.97	{1.9	6}	{1.38}	{6.26}	6.76	

Visual results


Visual results

Supervised fine-tuning on public benchmarks

Method	Sintel Clean	Sintel Final	KITTI
RealFlow [9]	-	-	4.63 %
SemiFlow (RAFT)* [16]	1.65	2.79	4.85 %
RAFT-it [40]	1.55	2.90	4.31 %
RAFT-S-AF	1.42	2.75	4.12 %

Sun et al. Disentangling Architecture and Training for Optical Flow. ECCV 2022

Self-supervised AutoFlow Self-supervised learning + learning to render