

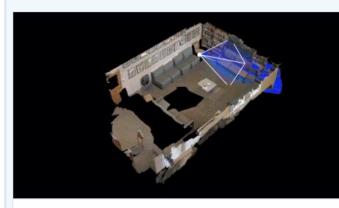
D²Former: Jointly Learning Hierarchical Detectors and Contextual Descriptors via Agent-based Transformers

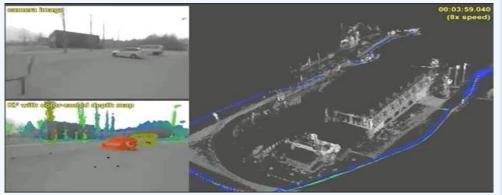
Jianfeng He^{1*} Yuan Gao^{1*} Tianzhu Zhang^{1,2} Zhe Zhang² Feng Wu¹

¹University of Science and Technology of China ²Deep Space Exploration Laboratory

Background

Image matching has broad 3D vision applications





Simultaneous localization and mapping (SLAM)

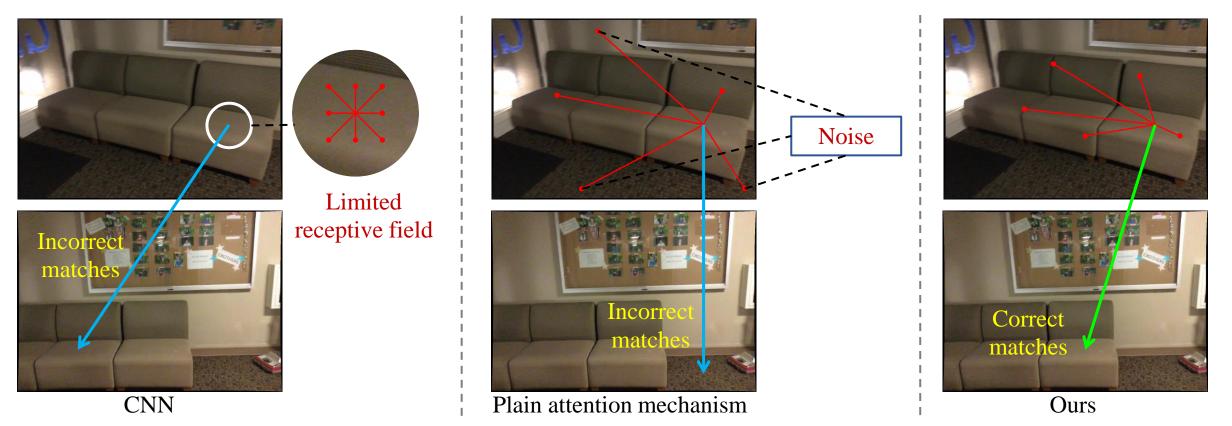
Visual localization

3D reconstruction

Challenges

Limited feature discriminability

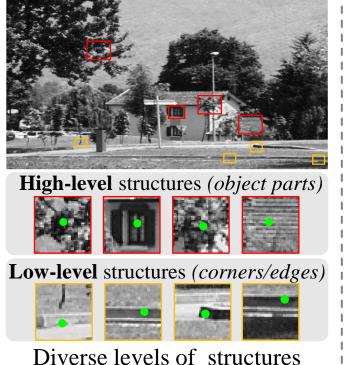
- > The receptive field of features extracted by CNN is limited.
- > The plain attention mechanism may aggregate irrelevant noise.
- > The above ways to extract features would lack discriminative ability in texture-less regions.

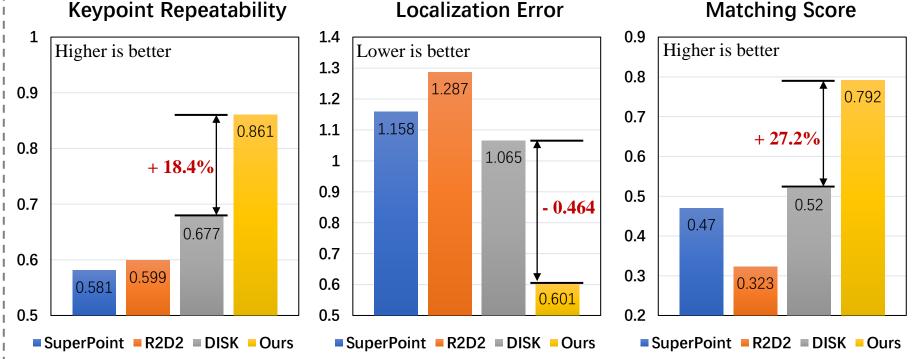


Challenges

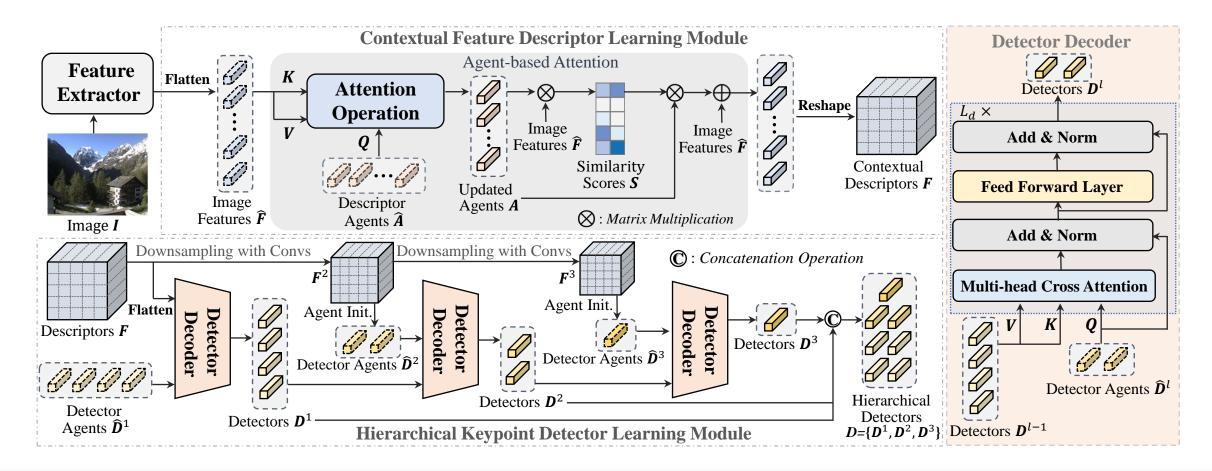
Detecting keypoints of different structures

- > There are diverse levels of structures in an image, from simple corner points to complex object parts.
- > Existing keypoint detectors are usually good at identifying keypoints with a specific level of structure.
- \succ The ability to detect keypoints with diverse levels of structures is needed.





Our Approach



We propose a novel image matching model **by jointly learning detectors and descriptors** via Agent-based Transformers, including a Contextual Feature Descriptor Learning Module and a Hierarchical Keypoint Detector Learning Module.

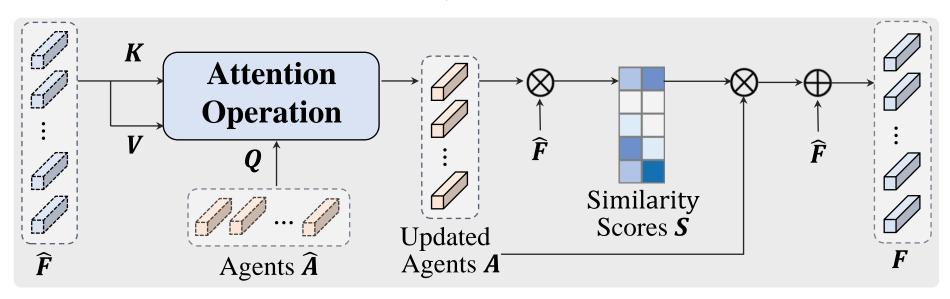
Contextual Feature Descriptor Learning (CFDL)

Agent-based attention mechanism

 \triangleright Descriptor agents A are learned by interacting with image features \widehat{F} via the attention operation:

 $Q = W^{\mathcal{Q}}\widehat{A}, \mathbf{K} = W^{\mathcal{K}}\widehat{F}, V = W^{\mathcal{V}}\widehat{F}$ $A = \mathbf{V} \cdot \operatorname{Softmax}(K^{T}\mathbf{Q})$

> Contextual feature descriptors F are obtained by fusing A and \widehat{F} : $F = \widehat{F} + AS$, where $S = A^T \widehat{F}$



Hierarchical Keypoint Detector Learning (HKDL)

□ Agent Initialization

- > Contextual Features F are down-sampled at each levels to obtain F^l
- > Multiple convolution layers are applied on F^l to produce masks
- > Detector agents \widehat{D}^{l} are initialized via the mask pooling operation on F^{l}

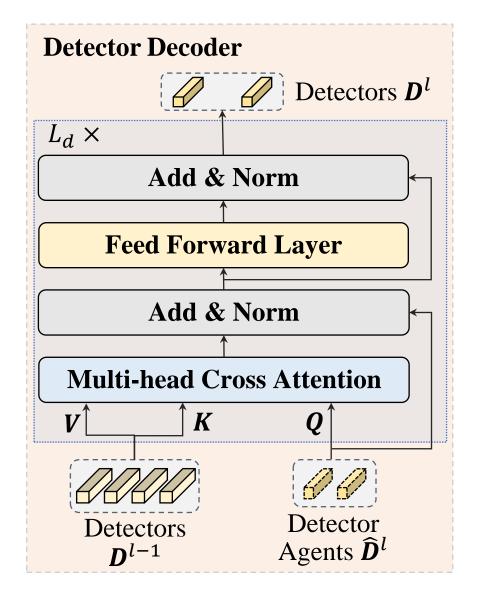
Detector Decoder

We aggregate low-level keypoint detectors to form high-level keypoint detectors in a hierarchical way:

 $\boldsymbol{D}^{l} = \text{Detector_decoder}(\widehat{\boldsymbol{D}}^{l}, \boldsymbol{D}^{l-1})$

Hierarchical keypoint detectors **D** are obtained by concatenating keypoint detectors **D**^l at different levels:

 $\boldsymbol{D} = concat(\left\{\boldsymbol{D}^l\right\}_{l=1}^3)$



Final Keypoint Detetcion and Matching

D Keypoint Detection

- Solution: $S_N = D^T F$ Given contextual descriptors F and hierarchical keypoint detectors D, multiple score maps S_N are generated by the dot production: $S_N = D^T F$
- ▶ The final keypoint detection score map $S_c \in \mathbb{R}^{1 \times h \times w}$ is obtained by averaging S_N on the first channel.
- \succ Keypoints can be obtained by applying the local maxima filtering and the threshold constraint on the score map S_c .

- \succ Given detected keypoints, their corresponding descriptors are acquired from the contextual feature maps F.
- > According to the keypoint feature distances, matches are established by the Nearest Neighbor (NN) matcher.

Experimental Results

***** Quantitative Results

Results on the				
Methods	AUC@3px	AUC@5px	AUC@10px	
Sparse-NCNet [32]	48.9	54.2	67.1	
DRC-Net [16]	50.6	56.2	68.3	
LoFTR [42]	65.9	75.6	84.6	+ 5.7%
D2-Net [12] + NN	23.2	35.9	53.6	1 3.1 /(
R2D2 [31] + NN	50.6	63.9	76.8	. 5 70/
DISK [47] + NN	52.3	64.9	78.9	+ 5.7%
SuperPoint [9] + SuperGlue [34]	53.9	68.3	81.7	
D^2 Former + NN (ours)	71.6	81.3	89.7	+ 5.1%

Results on the				
Methods	AUC@5°	AUC@ 10°	AUC@ 20°	
DRC-Net [16]	7.69	17.93	30.49	
LoFTR [42]	22.06	40.80	57.62	
ASpanFormer [7]	25.60	46.00	63.30	
D2-Net [12] + NN	5.25	14.53	27.96	+ 5.43%
R2D2 [31] + NN	7.43	17.45	28.64	
SuperPoint [9] + NN	9.43	21.53	36.40	+ 5.69%
SuperPoint [9] + PointCN [52]	11.40	25.47	41.41	+ 5.0970
SuperPoint [9] + OANet [53]	11.76	26.90	43.85	
SuperPoint [9] + SuperGlue [34]	16.16	33.81	51.84	+ 5.87%
D^2 Former + NN (ours)	31.03	51.69	69.17	

Results on the				
Methods	AUC@5°	AUC@ 10°	AUC@20°	
LoFTR [42]	40.28	61.17	77.80	
SIFT [18] + SuperGlue [34]	30.49	51.29	69.72	+ 16.50%
R2D2 [31] + NN	33.85	52.44	68.53	
SuperPoint [9] + NN	16.94	30.39	45.72	+ 12.54%
SuperPoint [9] + OANet [53]	26.82	45.04	62.17	1 12.0 170
SuperPoint [9] + SuperGlue [34]	38.72	59.13	75.81	+ 7.57%
D^{2} Former + NN (ours)	56.78	73.71	85.37	+ 1.51%
	•			

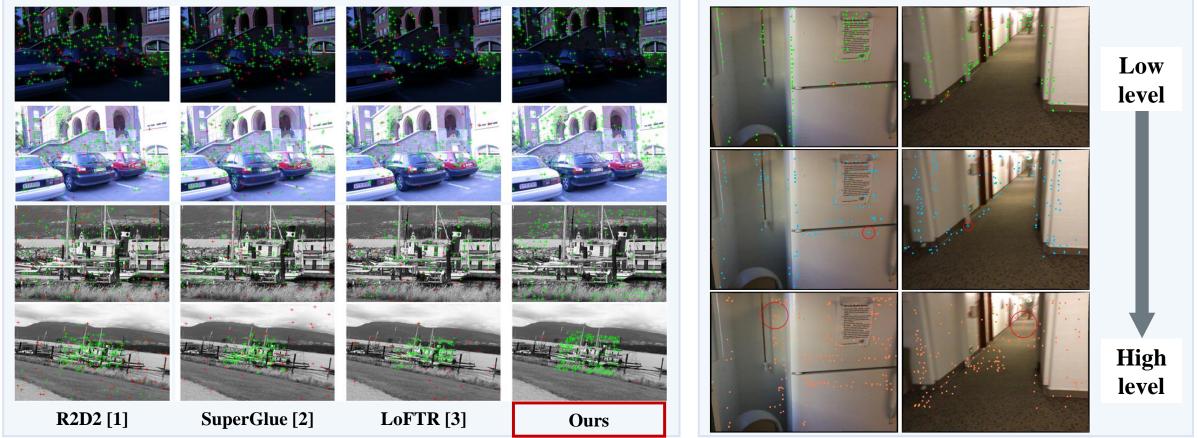
Results on the 				
Methods	AUC@5°	AUC@ 10°	AUC@20°	
DRC-Net [16]	27.01	42.96	58.31	
LoFTR [42]	52.80	69.19	81.18	
ASpanFormer [7]	55.30	71.50	83.10	+ 10.97%
R2D2 [31] + NN	37.14	55.09	69.65	+ 6.94%
SuperPoint [9] + SuperGlue [34]	42.18	61.16	75.96	+ 0.94%
D^2 Former + NN (ours)	66.27	78.44	86.81	+ 3.71%

Effectiveness of each component on the ScanNet						
Models	HKDL	CFDL	AUC $@5^{\circ}$	AUC@ 10°	AUC@ 20°	
[A]	X	×	7.43	17.45	28.64	+ 23.60%
[B]	X	\checkmark	18.68	36.49	55.17	+ 34.24%
[C]	1	×	27.64	48.34	67.05	
[D]	 ✓ 	\checkmark	31.03	51.69	69.17	+ 40.53%

Experimental Results

***** Qualitative Results

Qualitative comparisons with previous state-of-the-art methods



Keypoint detection results for different levels

[1] Revaud J, De Souza C, Humenberger M, et al. R2d2: Reliable and repeatable detector and descriptor[J]. Advances in neural information processing systems, 2019, 32.

[2] Sarlin P E, DeTone D, Malisiewicz T, et al. Superglue: Learning feature matching with graph neural networks. Proceedings of the IEEE conference on computer vision and pattern recognition. 2020: 4938-4947.
 [3] Sun J, Shen Z, Wang Y, et al. LoFTR: Detector-free local feature matching with transformers. Proceedings of the IEEE conference on computer vision and pattern recognition. 2021: 8922-8931.

Conclusion

We propose a novel image matching model by Jointly Learning Hierarchical Detectors and Contextual Descriptors via Agent-based Transformers.

 D²Former can extract discriminative features and realize robust keypoint detection under some extremely challenging scenarios.

 D²Former outperforms previous state-of-the-art methods by a large margin on four challenging benchmarks.

D²Former: Jointly Learning Hierarchical Detectors and Contextual Descriptors via Agent-based Transformers

Thanks for watching!

Jianfeng He^{1*} Yuan Gao^{1*} Tianzhu Zhang^{1,2} Zhe Zhang² Feng Wu¹

¹University of Science and Technology of China ²Deep Space Exploration Laboratory



