



# **Class Adaptive Network Calibration**

Bingyuan Liu<sup>\*1</sup>, Jérôme Rony<sup>\*1</sup>, Adrian Galdran<sup>2</sup>, Jose Dolz<sup>1</sup>, Ismail Ben Ayed<sup>1</sup> <sup>1</sup>ÉTS Montreal, Canada <sup>2</sup>Universitat Pompeu Fabra, Spain

Poster info : WED-PM-354

### Background: calibration

• Calibration should be considered beyond accuracy



Perfectly calibrated : Confidence = Accuracy

Miscalibrated:

- Over-confident : Confidence > Accuracy
- Under-confident : Confidence < Accuracy

### Background: calibration

• Previous methods: Focus on enhancing learning objectives or employing post-processing technique

• Our message: we established that a better designed optimizer notably impacts the outcomes.

# Contributions



- CALS: Propose Class Adaptive Label Smoothing, where adaptive class-wise multipliers are introduced.
- ALM: Implement a modified Augmented Lagrangian Multiplier algorithm to solve the constrained optimization problem of calibration.
- SOTA: Superior calibration performances over a variety of benchmarks.

# Introduction - calibration matters

- Deep learning models as a service
  - providing reliable prediction confidence for customers or downstream modules

• Safety-sensitive applications :

![](_page_4_Figure_4.jpeg)

![](_page_4_Figure_5.jpeg)

Detecting lung cancer from CT Scans Assess cardiac health from electrocardiograms

![](_page_4_Picture_7.jpeg)

![](_page_4_Picture_8.jpeg)

Classify skin lesions

from images of the skin

![](_page_4_Picture_9.jpeg)

Identify retinopathy from eye images

#### Medical diagnosis

Autonomous driving

# DNNs are poorly calibrated !

![](_page_5_Figure_1.jpeg)

Causes of Miscalibration :

- Cross-entropy objective : push the predictions to match the binary ground-truth
- Over-fitting of high-capacity DNNs in probabilistic error rather than classification error

# **Previous solutions**

- Post-processing method :
  - Temperature scaling [Guo et al., ICML 2017]
  - Post-hoc uncertainty calibration for domain drift scenarios [Tomani et al., CVPR 2021]
  - Local temperature scaling [Ding et al., ICCV 2021]
- Training methods:
  - Explicitly penalizes the prediction by maximizing its entropy (ECP) [Pereyra et al., ICLR 2017]
  - Label smoothing (LS) [Muller et al., NeurIPS 2019]
  - Focal loss (FL) [Mukhoti et al., NeurIPS 2020]
  - CPC [Cheng et al., CVPR 2022]
  - MbLS [Liu et al., CVPR 2022]

# Our motivation

- Instead of exploring a better learning objective, we establish that the optimizer matters significantly
- The scalar balancing weight used for controlling relative contribution of calibration penalty is not ideal:
  - The weight is the same for all classes
  - The weight is usually fixed without an adaptive strategy

# Contributions

![](_page_8_Figure_1.jpeg)

- CALS: Propose Class Adaptive Label Smoothing, where adaptive class-wise multipliers are introduced.
- ALM: Implement a modified Augmented Lagrangian Multiplier algorithm to solve the constrained optimization problem of calibration.
- SOTA: Superior calibration performances over a variety of benchmarks.

### Notations

![](_page_9_Figure_1.jpeg)

DNN

![](_page_9_Figure_3.jpeg)

![](_page_9_Figure_4.jpeg)

$$\mathcal{L}_{ ext{CE}} = -\sum_k y_k \log s_k$$

The constrained optimization for training calibrated network:

$$egin{aligned} &\min_{ extsf{ heta}} & \sum_{i=1}^N \mathcal{L}_{ extsf{CE}}(oldsymbol{x}^{(i)}, y^{(i)}) \ & extsf{s.t.} &\max_k \{oldsymbol{l}_k^{(i)}\} - l^{(i)} \preceq m oldsymbol{1}_K, \quad i=1,\ldots,N, \end{aligned}$$

Previous metod (MbLS [Liu et al. CVPR 2022]) approximately solves it by a penalty method.

We propose to address it by Augmented Lagrangian Multiplier (ALM).

General constrained optimization:

$$\min_{x} \quad f(x) \quad \text{s.t.} \quad h_i(x) \le 0, \quad i = 1, \dots, n$$

General ALM:

$$\min_{x} \quad \mathcal{L}^{(j)}(x) = f(x) + \sum_{i=1}^{n} P(h_i(x), \rho_i^{(j)}, \lambda_i^{(j)})$$

Algorithm 1 Augmented Lagrangian Multiplier algorithm **Require:** Objective function *f* **Require:** Constraint functions  $h_i, i = 1, ..., n$ **Require:** Penalty function P, initial  $\lambda^{(0)} \in \mathbb{R}^n_{++}$ ,  $\rho^{(0)} \in \mathbb{R}^n_{++}$ **Require:** Initial variable  $x^{(0)}$ , iterations j = 11: while not converged do Initialize with  $x^{(j-1)}$  and minimize (approximately): 2:  $\mathcal{L}^{(j)}(x) = f(x) + \sum_{i=1}^{n} P(h_i(x), \rho_i^{(j)}, \lambda_i^{(j)})$ 3:  $x^{(j)} \leftarrow (\text{approximate}) \text{ minimizer of } \mathcal{L}^{(j)}$ 4: **for** i = 1, ..., n **do**  $\lambda_i^{(j+1)} \leftarrow P'(h_i(x^{(j)}), \rho_i^{(j)}, \lambda_i^{(j)})$ 5: if the *i*-th constraint does not improve then 6:  $ho_i^{(j+1)} \leftarrow \gamma 
ho_i^{(j)}$ 7: 8: else  $\rho_i^{(j+1)} \leftarrow \rho_i^{(j)}$ 9: end if 10: end for 11: 12:  $j \leftarrow j + 1$ 13: end while

The critical designs to make ALM applicable for training DNNs:

• Apply class-wise multipliers instead of sample-wise multipliers.

• Consider that a training epoch corresponds to the approximate minimization of the loss function.

• Use the validation set to obtain a reliable estimate of the penalty multipliers at each epoch.

• Utilize the PHR function as the penalty function.

The formulation of the proposed CALS-ALM:

$$\sum_{i=1}^N \mathcal{L}_{ ext{CE}}(oldsymbol{x}^{(i)},y^{(i)}) + rac{1}{K}\sum_{k=1}^K Pigg(rac{d_k^{(i)}}{m}-1,
ho_k,\lambda_kigg)$$

PHR penalty function:

$$PHR(z, \rho, \lambda) = \begin{cases} \lambda z + \frac{1}{2}\rho z^2 & \text{if } \lambda + \rho z \ge 0; \\ -\frac{\lambda^2}{2\rho} & \text{otherwise.} \end{cases}$$

Datasets:

- Image classification: Tiny-ImageNet, ImageNet
- Long-tailed image classification: ImageNet-LT
- Semantic segmentation: PASCAL VOC 2012
- Text classification: 20 Newsgroups

#### Metrics:

- Calibration: expected calibration error (ECE) and its variant, Adaptive ECE (AECE)
- Discrimination:
  - Accuracy (ACC) for classification
  - Mean interaction over union (mIoU) for segmentation

Best calibration performance with almost no cost in accuracy

|           | Ti           | eNet        | ImageNet    |           |      |      |              |             | ImageNet-LT |              |             |             |          |       |       |
|-----------|--------------|-------------|-------------|-----------|------|------|--------------|-------------|-------------|--------------|-------------|-------------|----------|-------|-------|
|           | ResNet-50    |             |             | ResNet-50 |      |      | SwinV2-T     |             |             | ResNet-50    |             |             | SwinV2-T |       |       |
| Method    | Acc          | ECE         | AECE        | Acc       | ECE  | AECE | Acc          | ECE         | AECE        | Acc          | ECE         | AECE        | Acc      | ECE   | AECE  |
| CE        | 65.02        | 3.73        | 3.69        | 75.16     | 9.19 | 9.18 | 75.60        | 9.95        | 9.94        | 37.90        | 28.12       | 28.12       | 31.82    | 31.82 | 36.68 |
| MMCE [18] | <u>65.34</u> | 2.81        | 2.61        | 74.85     | 8.57 | 8.56 | 76.68        | 9.07        | 9.08        | 37.79        | 28.41       | 28.40       | 33.14    | 26.41 | 26.41 |
| ECP [38]  | 64.90        | 4.00        | 3.92        | 75.22     | 8.27 | 8.26 | 75.82        | 9.88        | 9.86        | 37.69        | 28.14       | 28.13       | 31.22    | 33.70 | 33.70 |
| LS [42]   | 65.78        | 3.17        | 3.16        | 76.04     | 2.57 | 2.88 | 75.42        | 7.32        | 7.33        | 37.88        | 10.46       | 10.38       | 31.70    | 11.42 | 11.40 |
| FL [31]   | 63.09        | 2.96        | 3.12        | 73.87     | 1.60 | 1.65 | 75.60        | 3.19        | 3.18        | 36.04        | 18.37       | 18.36       | 30.73    | 25.50 | 25.50 |
| FLSD [31] | 64.09        | 2.91        | 2.95        | 73.97     | 2.08 | 2.06 | 74.70        | 2.44        | 2.37        | 36.18        | 17.77       | 17.78       | 32.56    | 25.16 | 25.17 |
| CPC [5]   | 64.49        | 4.88        | 4.91        | 76.33     | 3.66 | 3.59 | 76.34        | 5.50        | 5.33        | 38.90        | 16.00       | 15.99       | 32.54    | 13.21 | 13.19 |
| MbLS [22] | 64.74        | <u>1.64</u> | <u>1.73</u> | 75.82     | 4.44 | 4.26 | <u>77.18</u> | <u>1.95</u> | <u>1.73</u> | 38.32        | 6.16        | 6.16        | 32.05    | 7.65  | 7.64  |
| CALS-HR   | 65.09        | 2.50        | 2.42        | 76.34     | 5.63 | 5.69 | 77.58        | 3.06        | 2.95        | 38.50        | <u>2.83</u> | <u>2.78</u> | 34.31    | 2.37  | 2.45  |
| CALS-ALM  | 65.03        | 1.54        | 1.38        | 76.44     | 1.46 | 1.32 | 77.10        | 1.61        | 1.69        | <u>38.56</u> | 2.15        | 2.30        | 33.94    | 2.32  | 2.45  |

Table 1. Calibration performance for different approaches on three image classification benchmarks. We report two lower-is-better calibration metrics, *i.e.* ECE and AECE. Best method is highlighted in bold, while the second-best one is underlined.

• Visualization of learned multipliers

![](_page_16_Figure_2.jpeg)

Figure 4. Visualization of learned multipliers  $\lambda_k$  during the training of the ResNet-50 model on ImageNet. We show classes with the highest average (*Solid lines*) and the lowest average (*dashed lines*).

![](_page_17_Figure_1.jpeg)

Figure 5. Calibration visualizations: (a) ImageNet (ResNet-50), (b) ImageNet (SwinV2-T), (c) ImageNet-LT (ResNet-50), and (d) ImageNet-LT (SwinV2-T). We present the reliability diagrams of our method (CALS), compared with those of baselines and closely related works. The number of bins to plot reliability diagrams is set to 25.

# Conclusions

• Propose a modified Augmented Lagrangian Multiplier method for calibrating DNNs, where adaptive class-wise multipliers are introduced.

• Demonstrate that the optimizer matters significantly for model calibration, and encourage more future research in this direction

![](_page_19_Picture_0.jpeg)

![](_page_19_Picture_1.jpeg)

# Thank you !

Code : <u>https://github.com/by-liu/CALS</u>

Bingyuan Liu : https://by-liu.github.io