Structured Kernel Estimation for Photon-Limited Deconvolution

Motion Blur + Shot Noise

Conventional Blind Deconvolution^[1]

[1] Jérémy Anger et al. *"Efficient blind deblurring under high noise levels."* International Symposium on Image and Signal Processing and Analysis (ISPA). IEEE, 2019.

Structured Kernel Estimation for Photon-Limited Deconvolution

Shot Noise

Iterative Kernel Estimation

Blind Deconvolution as Iterative Kernel Estimation

Real blurred and noisy image

Restored image, kernel in inset

Need for a low-dimension search space!

Changing the Search Space

Differentiable Search Space

Iterative Scheme in the New Search Space

Improved Deconvolution!

Real Blurred and Noisy Image

Restored Image using iterative kernel estimation

Ours, structured kernel estimation

Conclusion

• Iterative kernel estimation scheme for blind deconvolution

Conclusion

- Iterative kernel estimation scheme for blind deconvolution
- New lower-dimensional search space for kernel estimation

Conclusion

- Iterative kernel estimation scheme for blind deconvolution
- New lower-dimensional search space for kernel estimation
- Refer to our paper <u>"Structured Kernel</u> <u>Estimation for Photon-Limited</u> <u>Deconvolution</u>" on arxiv for more details

