

Decompose More and Aggregate Better: Two Closer Looks at Frequency Representation Learning for Human Motion Prediction

Xuehao Gao¹, Shaoyi Du¹, Yang Wu², Yang Yang¹

¹Xi'an Jiaotong University,

²Tencent AI Lab

Part 1 Quick Preview

Part 2

Detailed Introduction

• Formulation

 $\mathbf{X}^{+} = F_{pred} \left(\mathbf{X}^{-} \right)$

V Results where

VI Sum mary

IV Our

Method

 $X^- \in \mathbb{R}^{T^- \times V \times 3}$: Past T^- step 3D human poses. $X^+ \in \mathbb{R}^{T^+ \times V \times 3}$: Next T^+ step 3D human poses. V: Number of body joints for each skeleton.

Application

Sports Analysis

Autonomous Driving

• Paradigm Review

VResults

Sum

mary

VI

$$F_{pred}\left(\mathbf{X}^{-}\right) = F_{IDCT}\left(F_{Enc}\left(F_{DCT}\left(\mathbf{X}^{-}\right)\right)\right)$$

[1] Mao et al., Learning Trajectory Dependencies for Human Motion Prediction. ICCV-2019. [2] Li et al., Skeleton-Parted Graph Scattering Networks for 3D Human Motion Prediction. ECCV-2022.

• *Diverse frequency distributions bring challenges to robust human motion prediction*

II ^{Previous} Works

⇔ intra-sample difference

⇔ inter-sample difference

_{IV} Our Method

V Results

Sum

marv

Different personal motion styles in the same Different personal motion styles in the same Strequency appearances ata samples solution for robust human motion prediction.

V Results

Sum marv

 $F_{pred}\left(\mathbf{X}\right) = F_{IDCT}\left(F_{enc}\left(F_{DCT}\left(\mathbf{X}\right)\right)\right) \longrightarrow \longrightarrow$

Conventional Scheme

 $F_{pred} \left(\mathbf{X} \right) = F_{IDCT} \left(F_{enc} \left(\overline{\mathbf{X}}_{1}, \overline{\mathbf{X}}_{2}, \dots, \overline{\mathbf{X}}_{K} \right) \right)$ where $\overline{\mathbf{X}}_{k} = F_{filt}^{k} \left(F_{DCT} \left(\mathbf{X} \right) \right)$ **Proposed Scheme**

	Short-term Prediction on Human3.6M Dataset																			
Peper Link																				
					4	4.6	4		§.	11	2.				-					
	wal	lking eating	smokir	ng discu	ssion	direction	greeting	phor	ning	posing	purchases	sitting	g sitting	sitting down taki		posing	walking d	log walking togethe		
- Introd		scenarios		walking			eating				smoking				1	discussion				
I IIIIOu		millisecond		160ms 320ms		400ms	80ms 160ms		320ms	400ms	80ms	160ms	320ms	20ms 400ms		160ms 320m		400ms		
uction		DMGNN [1]	17.3	30.7	54.6	65.2	11.0	21.4	36.2	43.9	9.0	17.6	32.1	40.3	17.3	34.8	61.0	69.8		
		MSR-GCN [2]	12.2	22.7	38.6	45.2	8.4	17.1	33.0	40.4	8.0	16.3	31.3	38.2	12.0	26.8	57.1	69.7		
 11 Previous		PGBIG [3]	10.2	19.8	34.5	40.3	7.0	15.1	30.6	38.1	6.6	14.1	28.2	34.7	10.0	23.8	53.6	66.7		
		SPGSN [4]	10.1	19.4	34.8	41.5	7.1	14.9	30.5	37.9	6.7	13.8	28.0	34.6	10.4	23.8	53.6	67.1		
		Ours	8.8	16.9	31.5	37.0	6.3	13.7	29.1	36.3	5.1	9.1	21.3	29.9	7.4	17.1	42.9	50.4		
Works	scenarios			dire	directions		greeting					pho	ning		posing					
•••••		millisecond	80ms	160ms	320ms	400ms	80ms	160ms	320ms	400ms	80ms	160ms	320ms	400ms	80ms	160ms	320ms	400ms		
		DMGNN [1]	13.1	24.6	64.7	81.9	23.3	50.3	107.3	132.1	12.5	25.8	48.1	58.3	15.3	29.3	71.5	96.7		
I imit		MSR-GCN [2]	8.6	19.7	43.3	53.8	16.5	37.0	77.3	93.4	10.1	20.7	41.5	51.3	12.8	29.4	67.0	85.0		
		PGBIG [3]	7.2	17.6	40.9	51.5	15.2	34.1	71.6	87.1	8.3	18.3	38.7	48.4	10.7	25.7	60.0	76.6		
		SPGSN [4]	7.4	17.1	39.8	50.3	14.6	32.6	70.6	86.4	8.7	18.3	38.7	48.5	<u>10.7</u>	25.3	59.9	76.5		
<i>ations</i>		Ours		16.4	39.6	50.1	13.0	30.7	63.1	78.2	7.8	17.2	37.5	47.3	7.5	19.3	47.1	62.0		
		scenarios	purchases				sitting				0.0	sittingdown								
		millisecond	80ms	160ms	320ms	400ms	80ms	160ms	320ms	400ms	80ms	160ms	320ms	400ms	80ms	160ms	320ms	400ms		
IV Our		DMGNN [1]	21.4	38.7	15.1	92.7	11.9	25.1	44.6	50.2	15.0	32.9	11.1	93.0	13.6	29.0	46.0	58.8		
		MSR-GCN [2]	14.8	32.4	60.1	79.0	10.5	22.0	40.3	57.8	10.1	31.0	57.4	70.8	9.9	21.0	44.0	50.5		
		SPGSN [4]	12.5	28.6	61.0	71.1	0.0	19.2	42.4	53.6	14.2	27.9	56.8	70.7	0.4 8 7	18.0	42.0	527		
Methoa			11.0	20.0	56.4	63.9	87	18.9	42.5	53.0	13.9	25.6	54 2	67.2	81	18.0	39.2	50.6		
		scenarios	11.0	wa	iting	0.5.7	walkingdog				10.7	walking	together	07.2	0.1	average				
	3	millisecond	80ms	160ms	320ms	400ms	80ms	160ms	320ms	400ms	80ms	160ms	320ms	400ms	80ms	160ms	320ms	400ms		
T, Res		DMGNN [1]	12.2	24.2	59.6	77.5	47.1	93.3	160.1	171.2	14.3	26.7	50.1	63.2	17.0	33.6	65.9	79.7		
		MSR-GCN ^[2]	10.7	23.1	48.3	59.2	20.7	42.9	80.4	93.3	10.6	20.9	37.4	43.9	12.1	25.6	51.6	62.9		
v uns		PGBIG [3]	8.9	20.1	43.6	54.3	18.8	39.3	73.7	86.4	8.7	18.6	34.4	41.0	10.3	22.7	47.4	58.5		
	/	SPGSN ^[4]	9.2	19.8	43.1	54.1	18.2	37.3	71.3	84.2	8.9	18.2	33.8	40.9	10.4	22.3	47.1	58.3		
		Ours	8.2	18.4	41.3	52.1	14.5	32.7	63.8	76.0	7.4	15.2	30.0	36.4	9.3	19.7	41.0	51.1		
T _T Sum	[1]	l Maosen Li et al	Dynam	ic multis	cale oran	h neural n	etworks	for 3d sk	eleton b	ased hum	an motion	predictic	n In CV	/PR 2020)					

[1] Maosen Li, et al. Dynamic multiscale graph neural networks for 3d skeleton based human motion prediction. In CVPR, 2020.

[2] Lingwei Dang, et al. MSR-GCN: multi-scale residual graph convolution networks for human motion prediction. In ICCV, 2021.

[3] Tiezheng Ma, et al. Progressively generating better initial guesses towards next stages for high-quality human motion prediction. In CVPR, 2022.

[4] Maosen Li, et al. Skeleton-parted graph scattering networks for 3d human motion prediction. In ECCV, 2022.

VI

mary

	Long-te	Long-term Prediction on Human3.6M Dataset																	
Paper Link														I					
	walking	eatin	g sm	oking dis	scussion	direction	greeting	phoni	ng p	oosing	ourchases	sitting	sitting dov	n taking pł	noto po	sing walkir	ng dog wal	king together	
ntrod	scenario	S	wal	walking		eating		smoking		discussion		directions		greeting		phoning		posing	
in ou	millisecon	nd	560ms	1000ms	560ms	1000ms	560ms	1000ms	560ms	1000ms	560ms	1000ms	560ms	1000ms	560ms	1000ms	560ms	1000ms	
iction	DMGNN	[1]	73.4	95.8	58.1	86.7	50.9	72.2	81.9	138.3	110.1	115.8	152.5	157.7	78.9	98.6	163.9	310.1	
	MSR-GCN	[2]	52.7	63.0	52.5	77.1	49.5	71.6	88.6	117.6	71.2	100.6	116.3	147.2	68.3	104.4	116.3	174.3	
	PGBIG [3]		48.1	56.4	51.1	76.0	46.5	69.5	87.1	118.2	69.3	100.4	110.2	143.5	65.9	102.7	106.1	164.8	
	SPGSN 4	4]	46.9	53.6	49.8	73.4	46.7	68.6	89.7	118.6	70.1	100.5	111.0	143.2	66.7	102.5	110.3	165.4	
revious	Ours		45.2	50.3	49.0	71.1	40.6	59.3	59.5	92.3	68.1	97.2	109.4	141.8	65.1	96.7	93.3	149.5	
Varles	scenarios		purchases		sitting		sittingdown		takingphoto		wa	waiting		walkingdog		walkingtogether		average	
VOIKS	millisecon	nd	560ms	1000ms	560ms	1000ms	560ms	1000ms	560ms	1000ms	560ms	1000ms	560ms	1000ms	560ms	1000ms	560ms	1000ms	
	DMGNN	1	118.6	153.8	60.1	104.9	122.1	168.8	91.6	120.7	106.0	136.7	194.0	182.3	83.4	115.9	103.0	137.2	
	MSR-GCN	[2]	101.6	139.2	78.2	120.0	102.8	155.5	77.9	121.9	76.3	106.3	111.9	148.2	52.9	65.9	81.1	114.2	
-	PGBIG 3		95.3	133.3	74.4	<u>116.1</u>	96.7	147.8	74.3	118.6	72.2	103.4	104.7	139.8	51.9	64.3	76.9	110.3	
Limit	SPGSN 4	۱ <u> </u>	96.5	133.9	75.0	116.2	98.9	149.9	75.6	118.2	73.5	103.6	102.4	138.0	49.8	60.9	77.4	109.6	
ations	Ours		94.8	130.7	72.3	114.5	94.3	145.3	72.2	116.1	70.0	101.2	94.6	123.1	47.9	58.7	67.2	100.3	

Performance Gains on Few-sample Prediction

 II^{P} .

III

IV

VI

Our

Method

Res

ults

Sum

mary

Performance Gains on Each Joint

[1] Maosen Li, et al. Dynamic multiscale graph neural networks for 3d skeleton based human motion prediction. In CVPR, 2020.
[2] Lingwei Dang, et al. MSR-GCN: multi-scale residual graph convolution networks for human motion prediction. In ICCV, 2021.
[3] Tiezheng Ma, et al. Progressively generating better initial guesses towards next stages for high-quality human motion prediction. In CVPR, 2022.
[4] Maosen Li, et al. Skeleton-parted graph scattering networks for 3d human motion prediction. In ECCV, 2022.

imit

ations

Our

Method

IV

Decomposition –Aggregation Scheme

Contributions:

- We propose a frequency decomposition unit (FDU) that develops multiple versatile filters to embed each body joint trajectory into multiple frequency spaces, enriching its encodings in the spectral domain.
- We design a feature aggregation unit (FAU) that deploys a series of intra-space and inter-space feature aggregation layers to extract comprehensive representations from multiple frequency spaces, collecting richer multi-view body features for robust motion prediction.

Thanks For Watching!

Our Team:

Shaoyi Du

Yang Wu

Yang Yang

