Siamese Image Modeling for Self-Supervised Vision Representation Learning

Chenxin Tao^{1*}, Xizhou Zhu^{2*}, Weijie Su^{3*}, Gao Huang¹, Bin Li³, Jie Zhou¹, Yu Qiao⁴, Xiaogang Wang⁵, Jifeng Dai^{1,4}

¹Tsinghua University, ²SenseTime Research, ³University of Science and Technology of China, ⁴Shanghai Artificial Intelligence Laboratory, ⁵The Chinese University of Hong Kong

TUE-AM-204

上海人工智能实验室 Shanghai Artificial Intelligence Laboratory

Contribution

- A new form of self-supervised learning that can learn semantic alignment and spatial sensitivity with a single dense loss.
- Compared with MIM methods, reconstructing another view helps to obtain good semantic alignment.
- Compared with ID methods, matching the dense correspondence between two views can help to learn spatial sensitivity.
- SiameseIM is able to surpass both MIM and ID methods over a wide range of tasks. SiameseIM obtains more improvements in few-shot, long-tail and robustness-concerned scenarios.

Motivation – Two Mainstream SSL Methods

Typical Work

Motivation – Two Mainstream SSL Methods

semantic alignment can be achieved by matching different augmented view from the same image

spatial sensitivity can be achieved by predicting dense representations from masked images

We propose Siamese Image Modeling, which reconstructs the dense representations of an augmented view, based on another augmented view from the same image.

- > Augmentation: spatial + color augmentations for both views, mask augmentation for online view
- > Online branch makes the prediction:

$$y_b = g\left(Concat\left(y_a + p_a, \left\{m + p_b^{(u,v)}\right\}_{u=1,v=1}^{N_h, N_W}\right)\right)$$

 \succ m indicates mask token, p_a , p_b are the positional embedding of view x_a and x_b

Target branch computes
the target representation *z_b*

Positional Embedding

$$\tilde{p}_a^{(u,v)} = (u - 1, v - 1)$$

$$\tilde{p}_{b}^{(u,v)} = \left(\frac{h_{2}}{h_{1}}(u-1) + \frac{i_{2} - i_{1}}{h_{1}}N_{h}, \frac{w_{2}}{w_{1}}(v-1) + \frac{j_{2} - j_{1}}{w_{1}}N_{w}\right)$$

 $L = \mathbb{E}_{\left\{y_b^i, z_b^i\right\}} \left[-||y_b^i - z_b^i||^2 + \lambda \sum_{u \in N} \left(u^T y_b^i\right)^2 \right]$

Dense Loss

Experiments – Main Results

Method	Epochs		ImageNet	
	1	FT	LIN	$FT_{1\%}$
Supervised	300	81.8	-	-
DINO*	800^{+}	82.8	78.2	-
iBOT*	1600^{+}	84.0	79.5	-
DenseCL [‡]	400	82.2	69.7	49.9
MoCo-v3	600^{\dagger}	83.0	76.7	63.4
BEiT	800	83.2	-	-
MAE	400	83.1	62.5	-
MAE	1600	83.6	68.0	51.1
SiameseIM	400	83.7	76.8	61.8
SiameseIM	1600	84.1 (+0.5)	78.0 (+1.3)	65.1 (+1.7)

(a) Image classification.

Method	Epochs	AP^{b}	$AP_{\rm rare}^{\rm b}$	AP^{m}	$AP_{\rm rare}^{\rm m}$
Supervised	300	37.2	_	34.9	26.4
iBoT*	1600	36.9	29.1	34.6	28.9
DenseCL [‡]	400	33.8	25.1	32.1	24.6
MoCo-v3	600^{\dagger}	37.3	25.5	35.3	25.8
MAE	400	38.4	25.4	36.6	25.7
MAE	1600	40.1	29.3	38.1	29.1
SiameseIM	400	38.5	28.9	36.1	27.7
SiameseIM	1600	40.5	30.9	38.1	30.1
		(+0.4)	(+1.6)	(+0.0)	(+1.0)

Mathad	Encoha	CO	CO	ADE20k
Method	Epochs	AP^{b}	AP^{m}	mIoU
Supervised	300	47.9	42.9	47.4
DINO*	800^{+}	50.1	43.4	46.8
iBOT*	1600^{+}	51.2	44.2	50.0
DenseCL [‡]	400	46.6	41.6	44.5
MoCo-v3	600^{\dagger}	47.9	42.7	47.3
BEiT	800	49.8	44.4	47.1
MAE	400	50.6	45.1	45.0
MAE	1600	51.6	45.9	48.1
SiameseIM	400	50.7	44.9	49.6
SiameseIM	1600	52.1 (+0.5)	46.2 (+ 0.3)	51.1 (+3.0)

(b) Common object detection and semantic segmentation.

Method	Epochs	IN-A top-1	IN-R top-1	IN-Sketch top-1	IN-C 1-mCE
MSN*	1200^{+}	37.5	50.0	36.3	53.4
iBoT*	1600^{+}	42.4	50.9	36.9	55.5
DenseCL [‡]	400	30.8	43.8	29.9	48.1
MoCo-v3	600^{\dagger}	32.4	49.8	35.9	55.4
MAE	1600	35.9	48.3	34.5	48.3
SiameseIM	400	38.6	51.6	37.7	55.9
SiameseIM	1600	43.8	52.5	38.3	57.1
		(+7.9)	(+2.7)	(+2.4)	(+1.7)

(c) Long-tail object detection on LVIS.

(d) Robustness evaluation.

SiameselM is able to surpass both MIM and ID methods over a wide range of tasks.

Experiments – Main Results

Method	Epochs	FT	ImageNet	FT.~
		1.1	LIN	1.1.1%
Supervised	300	81.8	_	-
DINO*	800^{+}	82.8	78.2	-
iBOT*	1600^{+}	84.0	79.5	-
DenseCL [‡]	400	82.2	69.7	49.9
MoCo-v3	600^{\dagger}	83.0	76.7	63.4
BEiT	800	83.2	-	-
MAE	400	83.1	62.5	-
MAE	1600	83.6	68.0	51.1
SiameseIM	400	83.7	76.8	61.8
SiameseIM	1600	84.1 (+0.5)	78.0 (+1.3)	65.1 (+1.7)

(a) Image classification.

Method	Epochs	AP^{b}	$AP_{\rm rare}^{\rm b}$	AP^{m}	$AP_{\rm rare}^{\rm m}$
Supervised	300	37.2	_	34.9	26.4
iBoT*	1600	36.9	29.1	34.6	28.9
DenseCL [‡]	400	33.8	25.1	32.1	24.6
MoCo-v3	600^{\dagger}	37.3	25.5	35.3	25.8
MAE	400	38.4	25.4	36.6	25.7
MAE	1600	40.1	29.3	38.1	29.1
SiameseIM	400	38.5	28.9	36.1	27.7
SiameseIM	1600	40.5	30.9	38.1	30.1
		(+0.4)	(+1.6)	(+0.0)	(+1.0)

c) Long-tail object	detection	on l	LVIS.
---------------------	-----------	------	-------

Mathad	Encoha	CO	CO	ADE20k
Method	Epochs	AP^{b}	AP^{m}	mIoU
Supervised	300	47.9	42.9	47.4
DINO*	800^{\dagger}	50.1	43.4	46.8
iBOT*	1600^{+}	51.2	44.2	50.0
DenseCL [‡]	400	46.6	41.6	44.5
MoCo-v3	600^{\dagger}	47.9	42.7	47.3
BEiT	800	49.8	44.4	47.1
MAE	400	50.6	45.1	45.0
MAE	1600	51.6	45.9	48.1
SiameseIM	400	50.7	44.9	49.6
SiameseIM	1600	52.1 (+0.5)	46.2 (+0.3)	51.1 (+3.0)

(b) Common object detection and semantic segmentation.

Method	Epochs	IN-A top-1	IN-R top-1	IN-Sketch top-1	IN-C 1-mCE
MSN*	1200^{+}	37.5	50.0	36.3	53.4
iBoT*	1600^{+}	42.4	50.9	36.9	55.5
DenseCL [‡]	400	30.8	43.8	29.9	48.1
MoCo-v3	600^{\dagger}	32.4	49.8	35.9	55.4
MAE	1600	35.9	48.3	34.5	48.3
SiameseIM	400	38.6	51.6	37.7	55.9
SiameseIM	1600	43.8	52.5	38.3	57.1
		(+7.9)	(+2.7)	(+2.4)	(+1.7)

(d) Robustness evaluation.

SiameseIM obtains more improvements in few-shot, long-tail and robustness-concerned scenarios.

Experiments – Ablation Study

	target type	different views	color aug	mask type	BN/LN in proj & dec	loss norm*	loss type	loss form	FT	LIN	AP^{b}	AP^{m}
single view	with dens	e loss:										
MAE	pixel			random	LN	MAE-like	dense	L2	83.1	62.5	46.8	42.0
(a)	pixel			random	LN	MAE-like	dense	L2	82.8	62.3	47.3	42.5
(b)	feature			random	LN	MoCo-like	dense	UniGrad	81.0	48.7	43.5	39.2
(c)	pixel		\checkmark	random	LN	MAE-like	dense	L2	82.0	59.9	46.3	41.8
multiple vie	ws with d	ense loss:										
(d)	pixel	\checkmark		random	LN	MAE-like	dense	L2	78.7	46.2	38.1	34.8
(e)	feature	\checkmark		random	LN	MoCo-like	dense	UniGrad	82.9	69.6	48.5	43.4
(f)	feature	\checkmark	\checkmark	random	LN	MoCo-like	dense	UniGrad	83.0	73.1	47.9	43.2
(g)	feature	\checkmark	\checkmark	random	BN	MoCo-like	dense	UniGrad	83.2	73.6	48.7	43.7
(h)	feature	\checkmark	\checkmark	blockwise	BN	MoCo-like	dense	UniGrad	83.5	74.7	50.0	44.5
(i)	feature	\checkmark	\checkmark	blockwise	BN	MAE-like	dense	UniGrad	83.7	76.8	49.8	44.2
(j)	feature	\checkmark	\checkmark	blockwise	BN	MAE-like	dense	L2	83.3	76.5	49.8	44.2
multiple vie	ws with g	lobal loss:										
(k)	feature	\checkmark	\checkmark	random	BN	MoCo-like	global	UniGrad	82.7	72.0	45.9	41.4
MoCo-v3 with mask	feature	\checkmark	\checkmark	random	BN	MoCo-like	global	UniGrad	82.8	72.2	45.0	40.5

> Compared with MIM methods, reconstructing another view helps to obtain good semantic alignment.

Experiments – Ablation Study

	target type	different views	color aug	mask type	BN/LN in proj & dec	loss norm*	loss type	loss form	FT	LIN	AP^{b}	AP^{m}
single view	with dens	e loss:										
MAE	pixel			random	LN	MAE-like	dense	L2	83.1	62.5	46.8	42.0
(a)	pixel			random	LN	MAE-like	dense	L2	82.8	62.3	47.3	42.5
(b)	feature			random	LN	MoCo-like	dense	UniGrad	81.0	48.7	43.5	39.2
(c)	pixel		\checkmark	random	LN	MAE-like	dense	L2	82.0	59.9	46.3	41.8
multiple vie	ews with d	ense loss:										
(d)	pixel	\checkmark		random	LN	MAE-like	dense	L2	78.7	46.2	38.1	34.8
(e)	feature	\checkmark		random	LN	MoCo-like	dense	UniGrad	82.9	69.6	48.5	43.4
(f)	feature	\checkmark	\checkmark	random	LN	MoCo-like	dense	UniGrad	83.0	73.1	47.9	43.2
(g)	feature	\checkmark	\checkmark	random	BN	MoCo-like	dense	UniGrad	83.2	73.6	48.7	43.7
(h)	feature	\checkmark	\checkmark	blockwise	BN	MoCo-like	dense	UniGrad	83.5	74.7	50.0	44.5
(i)	feature	\checkmark	\checkmark	blockwise	BN	MAE-like	dense	UniGrad	83.7	76.8	49.8	44.2
(j)	feature	\checkmark	\checkmark	blockwise	BN	MAE-like	dense	L2	83.3	76.5	49.8	44.2
multiple vie	ws with g	lobal loss:										
(k)	feature	\checkmark	\checkmark	random	BN	MoCo-like	global	UniGrad	82.7	72.0	45.9	41.4
MoCo-v3 with mask	feature	\checkmark	\checkmark	random	BN	MoCo-like	global	UniGrad	82.8	72.2	45.0	40.5

Compared with ID methods, dense supervision can improve the spatial sensitivity.

Siamese Image Modeling for Self-Supervised Vision Representation Learning

Thanks for watching!

Contact us: tcx20@mails.tsinghua.edu.cn

