

NeRFLiX: High-Quality Neural View Synthesis by Learning a Degradation-Driven Inter-viewpoint MiXer

WED-PM-002

Kun Zhou^{1,2*}, Wenbo Li^{3*}, Yi Wang⁴, Tao Hu³, Nianjuan Jiang², Xiaoguang Han¹, Jiangbo Lu^{2†} ¹SSE, CUHK-SZ, ²SmartMore Corporation, ³CUHK, ⁴Shanghai AI Laboratory

Project Page: https://redrock303.github.io/nerflix/

Preview

- NeRFLiX is a general NeRF-agnostic restorer that is capable of improving view synthesis quality.
- NeRF models typically require (1) accurate camera poses, (2) complex inverse rendering systems, (3) illumination and material calibration, and (4) disentanglement of geometry and appearance to synthesize high-quality novel views.
- While being free of solving these challenges, NeRFLiX can directly enhance the NeRF's rendering quality by learning a degradation-driven inter-viewpoint mixer.

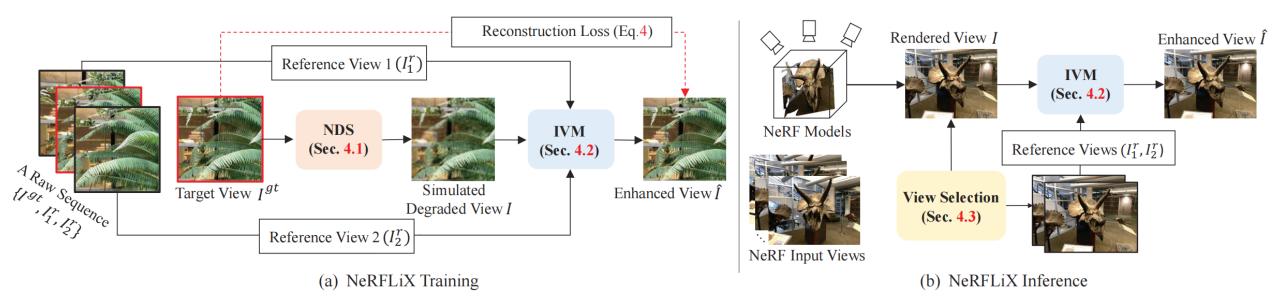
Introduction

Key Ideas:

- We propose a practical NeRF-style degradation simulator (called NDS) to model the NeRF-rendered artifacts and construct large-scale paired training data, enabling the possibility of effectively removing NeRF-native rendering artifacts for deep image/video restorers.
- Taking advantage of the simulated training data, we further develop a hybrid recurrent inter-viewpoint mixer (IVM) to fuse high-quality contents from reference views (the training photos of NeRFs) and eliminate NeRF-rendered degradations/artifacts.

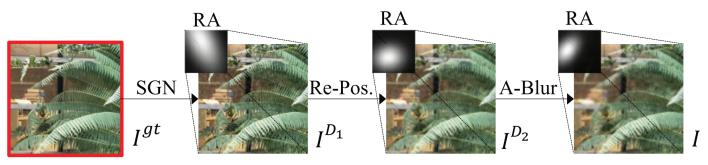
 RegNeRF-V3 (CVPR'22)
 RegNeRF-V3 + NeRFLiX
 Plenoxels (CVPR'22)
 Plenoxels + NeRFLiX
 TensoRF (ECCV'22)
 TensoRF + NeRFLiX

NeRFLiX Pipeline



• We utilized NDS to generate a large-scale training dataset. By leveraging the large-scale paired samples constructed by NDS, we trained IVM to eliminate NeRF-style artifacts and aggregate noise-free contents from reference views, resulting in a significant enhancement of NeRF-rendered views.

NeRF-style degradation simulator (NDS)



• Splatted Gaussian noise:

$$I^{D1} = (I^{gt} + n) \circledast g_1$$

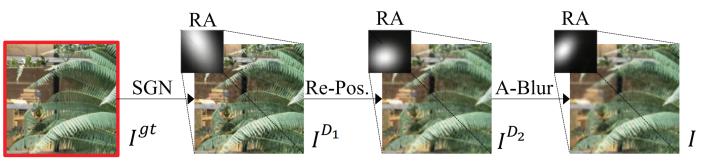
• Re-positioning:

$$I^{D2}(i,j) = \begin{cases} I^{D1}(i,j) & \text{if } p > 0.1\\ I^{D1}(i+\delta_i, j+\delta_j) & \text{else } p \le 0.1 \end{cases}$$

• Anisotropic blur:

$$I^{D3} = I^{D2} \circledast \hat{g}$$

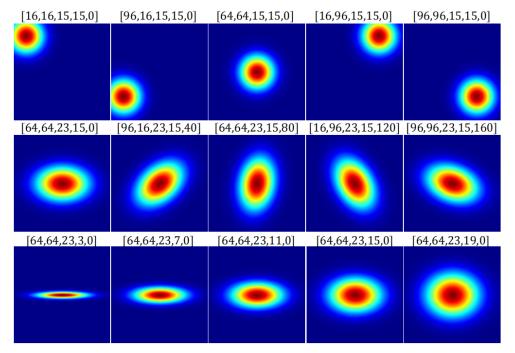
NeRF-style degradation simulator (NDS)



• Region adaptive strategy:

$$M(i,j) = G(i - c_i, j - c_j; \sigma_i, \sigma_j, A)$$
$$I^{D_t} = I^{D_{t-1}} \odot (1 - M_t) + (D_t(\mathbf{I}^{D_{t-1}}) \odot M_t)$$

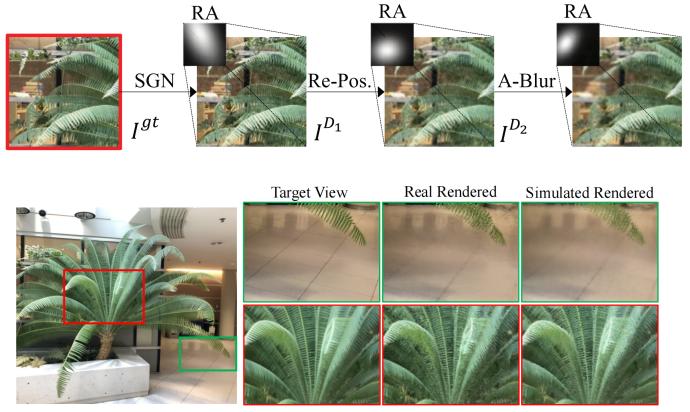
- *M*: Region-adaptive mask
- $t \in \{1,2,3\}$ refers to the *t*-th degradation operation
- \bigcirc : Element-wise multiplication



Some visualized region-adaptive masks

NeRF-style degradation simulator (NDS)

• NDS pipeline



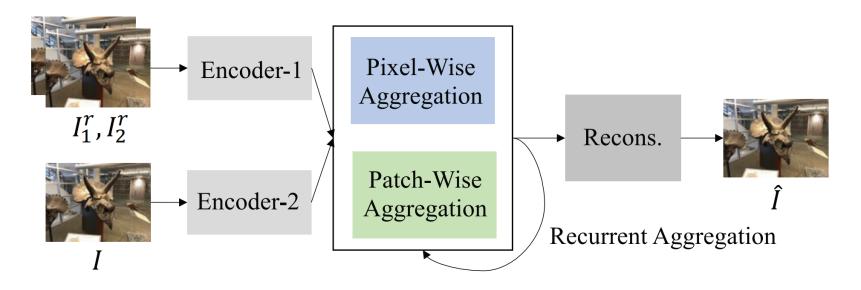
A visual example of real and simulated rendered views

Existing image/video restoration methods

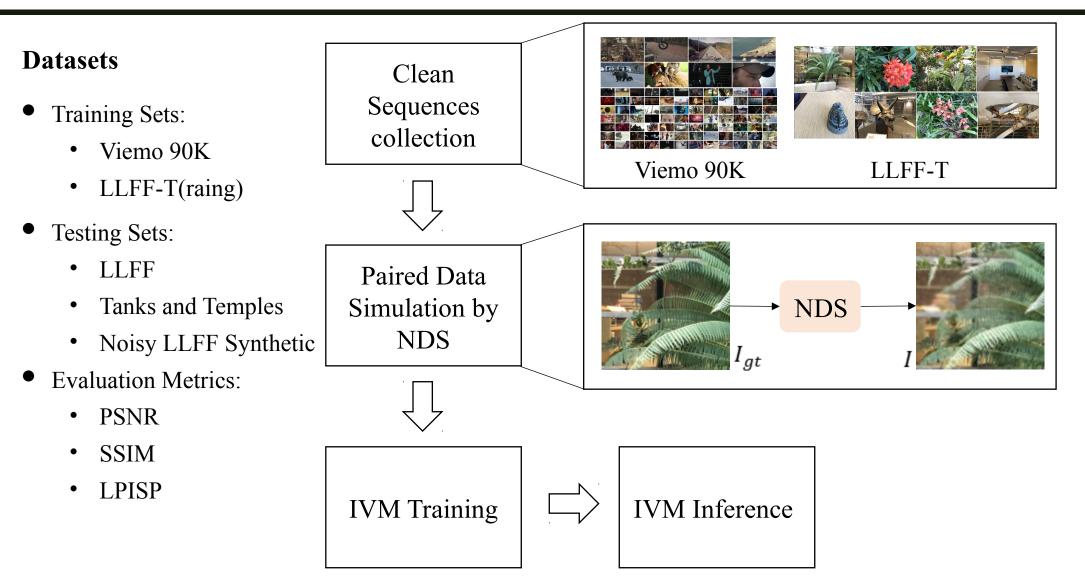
- Image restoration approaches have limited enhancement ability solely dependent on the degraded views.
- Video restoration models cannot effectively handle the distinct viewpoint changes between an input view and its two reference views.

Inter-viewpoint mixer (IVM)

- hybrid pixel-wise and patch-wise aggregation to effective inter-viewpoint fusion..
- iterative aggregation to further improve the inter-viewpoint fusion accuracy.

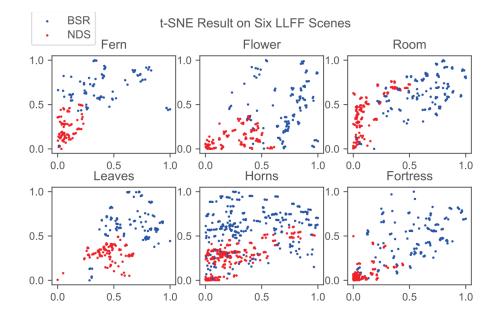


Experiments



Ablation Study

(1) Statically evaluation of BSR and ours proposed NDS



Quantitative comparison between our NDS and BSR. We draw the normalized differences between the simulated images of the two degradation methods and the real NeRF-rendered images. The smaller values, the better results are. (2) Impact of each presented degradation case in NDS

Models	SGN	Re-Pos.	A-Blur	RA	PSNR(dB)	SSIM
Model-1	\checkmark				27.08	0.856
Model-2	1	1			27.13	0.858
Model-3	1	1	1		27.21	0.859
Model-4	1	1	1	√	27.39	0.867

Table 1. Influences of different degradations used in our NeRFstyle degradation simulator. "SGN" and "RA" are shorted for splatted Gaussian noise and region-adaptive schemes and "A-Blur" refers to anisotropic Gaussian blur.

Ablation Study

(3) Quantitative comparison between BSR and NDS

Models	BSR	NDS	SwIR	IVM	PSNR	SSIM
SwIR _B	1		1		26.20	0.834
$SwIR_{\mathbf{N}}$		1	1		26.82	0.845
IVM _B	1			1	26.40	0.842
IVM _N		1		1	27.39	0.867

Table 2. Comparison of our NDS and the BSR degradation models

(4) NDS enbales the resotration ability of existing image/video resotration methods for NeRF-render images.

Model	TensoRF(Base)	SwIR _N	DATSR _N	EDVR _N	VST _N
PSNR	26.70	26.82	26.84	26.88	26.79
SSIM	0.838	0.845	0.843	0.847	0.842

Table 3. Quantitative results of the improvements using existing image/video processing models trained on our simulated dataset

*We use subscripts *N*, *B*, to represent the models trained with our NDS dataset and BSR, respectively

Ablation Study

(5) Effects of our proposed IVM

_	—				
Method	PSNR(dB)	SSIM	LPIPS	Speed (ms)	•
Pixel-wise	27.13	0.862	0.179	230	•
Patch-wise	27.00	0.854	0.183	237	
Hybrid + R1	27.21	0.865	0.173	181	•
Hybrid + R2	27.33	0.866	0.157	247	
Hybrid + R3	27.39	0.867	0.149	293	_

Table 4. Ablation studies of hybrid inter-viewpoint aggregation module. The running time is tested with an input size of 256×256

(6) View selection strategy

Method	LLFF	Tanks and Temple
Random	27.06dB/ 0.856	28.51dB/ 0.925
View Selection	27.39dB/ 0.867	28.94dB/ 0.930

Table 5. Ablation studies of our view selection strategy.

- Both the pixel-wise and patch-wise aggregations contribute to the final results.
- More iterations, higher performance.

Our proposed view selection strategy can identify the two reference views that are most overlapped with the input (test) view.

Quantitative analysis of our NeRFLiX

Method	PSNR (dB)↑	SSIM↑	LPIPS
TensoRF [7] (ECCV'22)	26.73	0.839	0.204
TensoRF [7] + NeRFLiX	27.39 († 0.66)	0.867	0.149
Plenoxels [16] (CVPR'22)	26.29	0.839	0.210
Plenoxels [16] + NeRFLiX	26.90 († 0.61)	0.864	0.156
NeRF-mm [59] (ARXIV'21)	22.98	0.655	0.440
NeRF-mm [59] + NeRFLiX	23.38 († 0.40)	0.694	0.360
NeRF [37] (ECCV'20)	26.50	0.811	0.250
NeRF [37] + NeRFLiX	27.26 (↑ 0.76)	0.863	0.159

Quantitative results on the LLFF under LLFF-P1.

Method	PSNR (dB)↑	SSIM↑	LPIPS
TensoRF [7] (ECCV'22)	28.43	0.920	0.142
TensoRF [7] + NeRFLiX	28.94 (↑ 0.51)	0.930	0.120
DIVeR [60] (CVPR'22)	28.16	0.913	0.145
DIVeR [60] + NeRFLiX	28.61 (↑ 0.45)	0.924	0.127

Improvement over TensoRF and DIVeR on Tanks and Temples

Method	PSNR $(dB)^{\uparrow}$	SSIM↑	LPIPS
NLF [1] (CVPR'22)	27.46	0.868	0.136
NLF [1] + NeRFLiX	28.19 († 0.73)	0.899	0.093
RegNeRF-V3 [39] (CVPR'22)	19.10	0.587	0.373
RegNeRF-V3 [39] + NeRFLiX	19.68 (↑ 0.58)	0.661	0.260
RegNeRF-V6 [39] (CVPR'22)	23.06	0.759	0.242
RegNeRF-V6 [39] + NeRFLiX	23.90 (↑ 0.84)	0.815	0.144
RegNeRF-V9 [39] (CVPR'22)	24.81	0.818	0.196
RegNeRF-V9 [39] + NeRFLiX	25.68 († 0.87)	0.863	0.114

Quantitative results on the LLFF under LLFF-P2.

Method	PSNR (dB)↑	SSIM↑	LPIPS
TensoRF [7] (ECCV'22)	22.83	0.881	0.147
TensoRF [7] + NeRFLiX	24.12 († 1.29)	0.913	0.092
Plenoxels [16] (CVPR'22)	23.69	0.882	0.127
Plenoxels [16] + NeRFLiX	25.51 († 1.82)	0.920	0.084

Improvement over TensoRF and Plenoxels on Noisy LLFF Synthetic

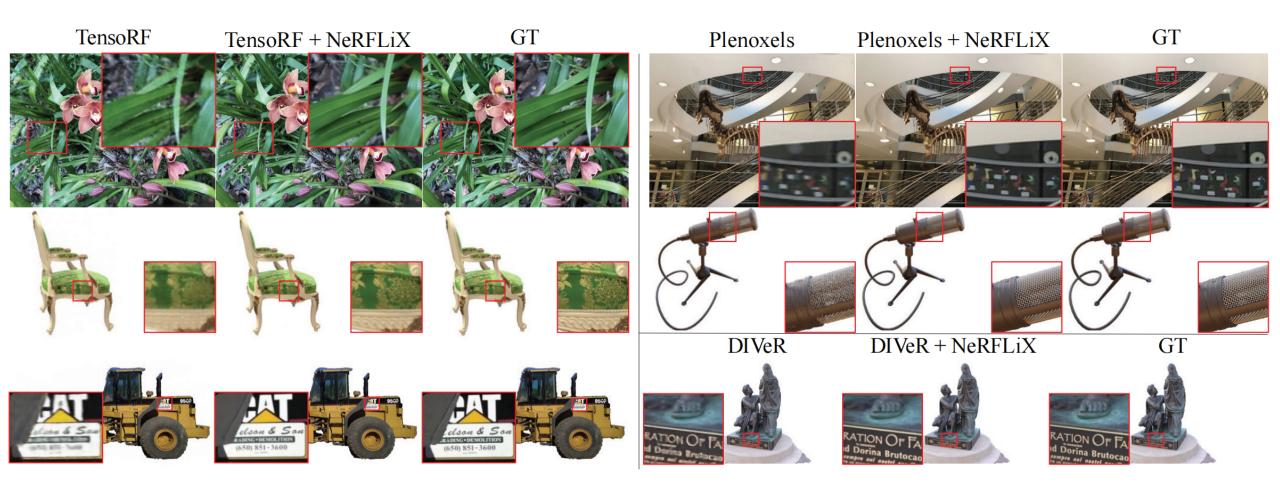
*We adopt 1008×756 resolution for LLFF-P1 and 504×376 resolution for LLFF-P2

Training Acceleration for NeRF Models

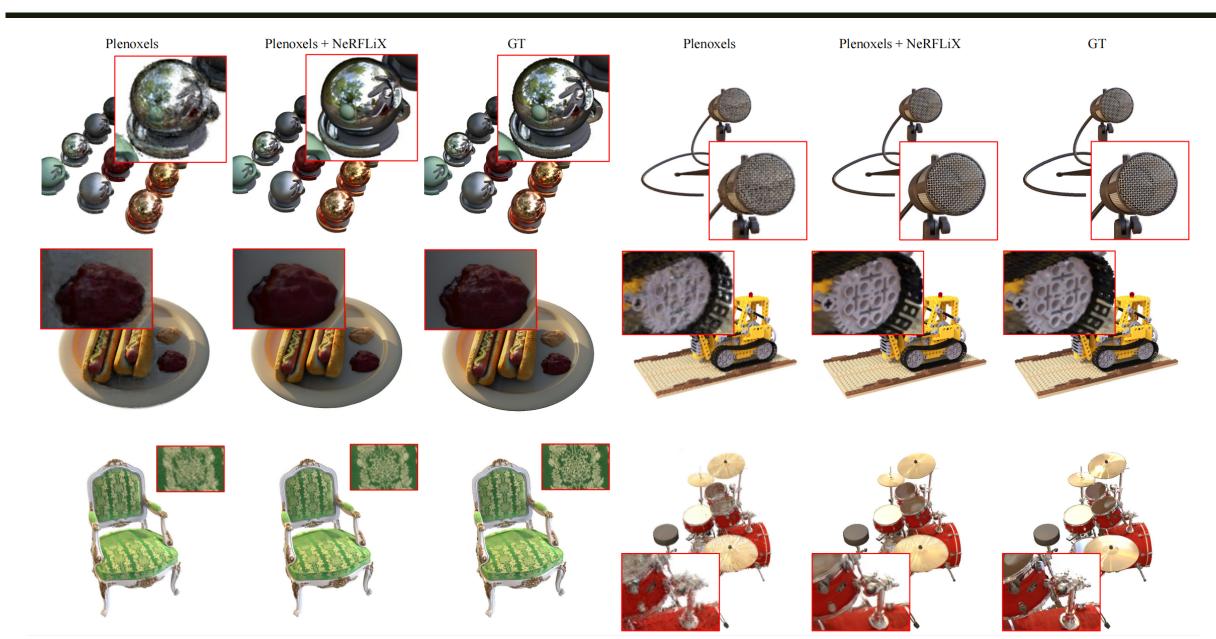
Method	PSNR (dB) [/] /SSIM [/] /LPIPS
TensoRF [7](4 hours)	26.73/ 0.839/ 0.204
TensoRF [7](2 hours)	26.18/ 0.819/ 0.230
[7](2 hours) + NeRFLiX	27.14/ 0.858/ 0.165
Plenoxels [16](24 minutes)	26.29/ 0.839/ 0.210
Plenoxels [16](10 minutes)	25.73/ 0.804/ 0.252
[16](10 minutes) + NeRFLiX	26.60/ 0.847/ 0.181

Fewer training epoches, but better performance.

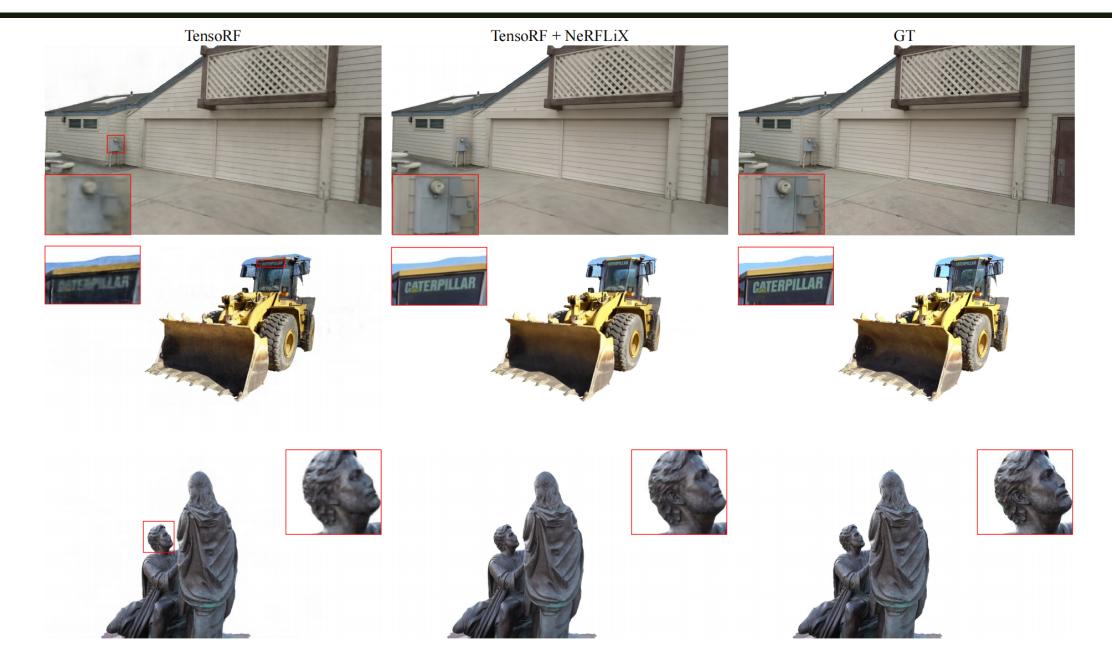
Visualization



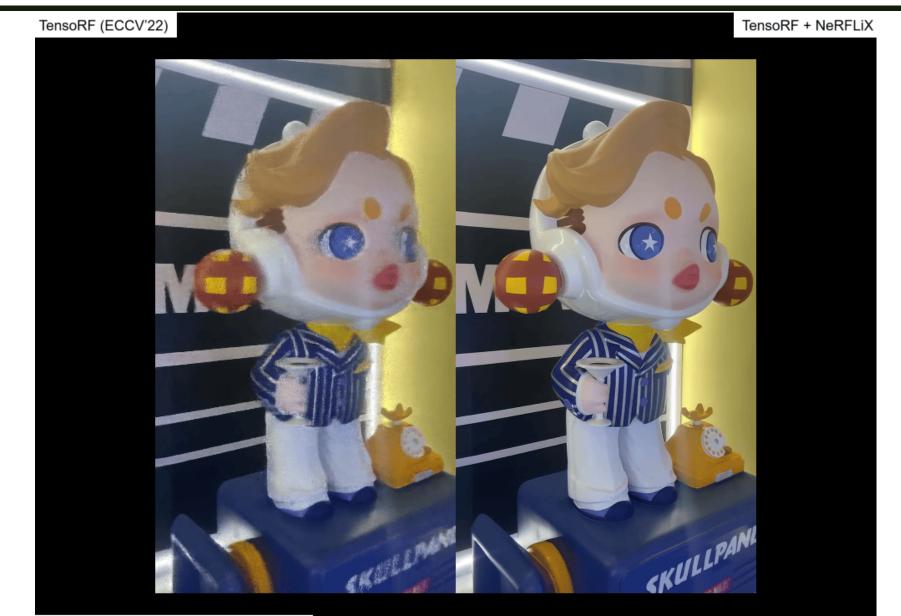
Visualization



Visualization



Video Demo-3



Video Case 2(In-the-wild Scene 2)

Summary

† NeRFLiX has the following advantages

- not require accurate camera poses.
- regardless of building complicated inverse rendering systems to regress object materials, and environment illumination.
- ▶ no re-training costs and can directly enhance all NeRF-rendered results significantly.
- Acclerate the training phases of SOTA NeRF models, while also enhancing the rendering quality.

Thank You!