

# NeRFLiX: High-Quality Neural View Synthesis by Learning a Degradation-Driven Inter-viewpoint MiXer

WED-PM-002

Kun Zhou<sup>1,2\*</sup>, Wenbo Li<sup>3\*</sup>, Yi Wang<sup>4</sup>, Tao Hu<sup>3</sup>, Nianjuan Jiang<sup>2</sup>, Xiaoguang Han<sup>1</sup>, Jiangbo Lu<sup>2†</sup> <sup>1</sup>SSE, CUHK-SZ, <sup>2</sup>SmartMore Corporation, <sup>3</sup>CUHK, <sup>4</sup>Shanghai AI Laboratory

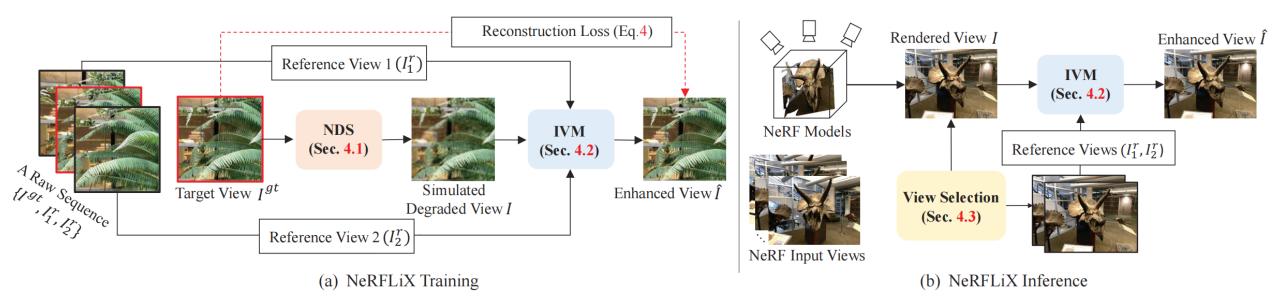
Project Page: https://redrock303.github.io/nerflix/

## **Preview**

- NeRFLiX is a general NeRF-agnostic restorer that is capable of improving view synthesis quality.
- NeRF models typically require (1) accurate camera poses, (2) complex inverse rendering systems, (3) illumination and material calibration, and (4) disentanglement of geometry and appearance to synthesize high-quality novel views.
- While being free of solving these challenges, NeRFLiX can directly enhance the NeRF's rendering quality by learning a degradation-driven inter-viewpoint mixer.

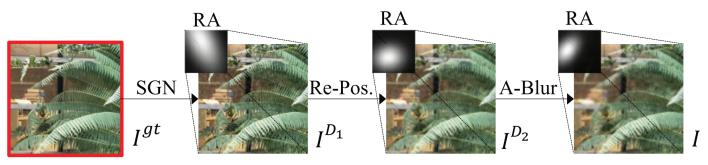


## Introduction


### **Key Ideas**:

- We propose a practical NeRF-style degradation simulator (called NDS) to model the NeRF-rendered artifacts and construct large-scale paired training data, enabling the possibility of effectively removing NeRF-native rendering artifacts for deep image/video restorers.
- Taking advantage of the simulated training data, we further develop a hybrid recurrent inter-viewpoint mixer (IVM) to fuse high-quality contents from reference views (the training photos of NeRFs) and eliminate NeRF-rendered degradations/artifacts.




 RegNeRF-V3 (CVPR'22)
 RegNeRF-V3 + NeRFLiX
 Plenoxels (CVPR'22)
 Plenoxels + NeRFLiX
 TensoRF (ECCV'22)
 TensoRF + NeRFLiX

### **NeRFLiX** Pipeline



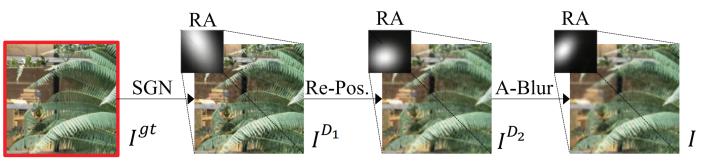
• We utilized NDS to generate a large-scale training dataset. By leveraging the large-scale paired samples constructed by NDS, we trained IVM to eliminate NeRF-style artifacts and aggregate noise-free contents from reference views, resulting in a significant enhancement of NeRF-rendered views.

#### **NeRF-style degradation simulator (NDS)**



• Splatted Gaussian noise:

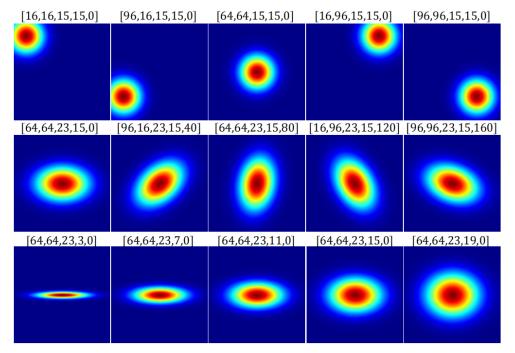
$$I^{D1} = (I^{gt} + n) \circledast g_1$$


• Re-positioning:

$$I^{D2}(i,j) = \begin{cases} I^{D1}(i,j) & \text{if } p > 0.1\\ I^{D1}(i+\delta_i, j+\delta_j) & \text{else } p \le 0.1 \end{cases}$$

• Anisotropic blur:

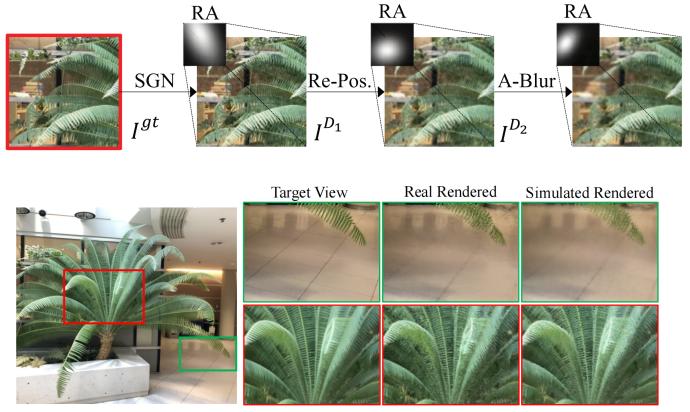
$$I^{D3} = I^{D2} \circledast \hat{g}$$


**NeRF-style degradation simulator (NDS)** 



• Region adaptive strategy:

$$M(i,j) = G(i - c_i, j - c_j; \sigma_i, \sigma_j, A)$$
$$I^{D_t} = I^{D_{t-1}} \odot (1 - M_t) + (D_t(\mathbf{I}^{D_{t-1}}) \odot M_t)$$


- *M*: Region-adaptive mask
- $t \in \{1,2,3\}$  refers to the *t*-th degradation operation
- $\bigcirc$ : Element-wise multiplication

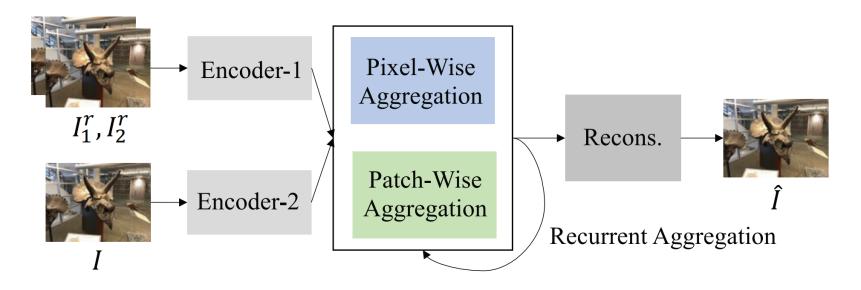


Some visualized region-adaptive masks

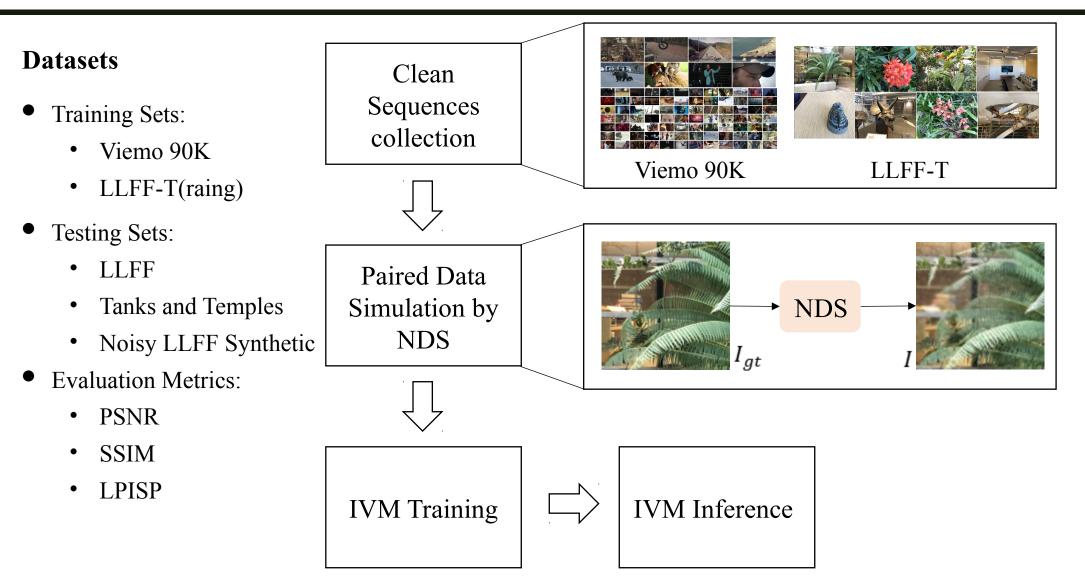
#### **NeRF-style degradation simulator (NDS)**

• NDS pipeline



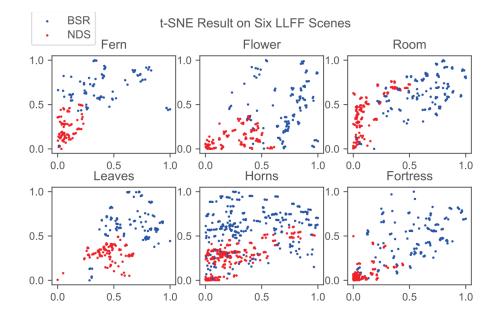

A visual example of real and simulated rendered views

#### **Existing image/video restoration methods**


- Image restoration approaches have limited enhancement ability solely dependent on the degraded views.
- Video restoration models cannot effectively handle the distinct viewpoint changes between an input view and its two reference views.

#### Inter-viewpoint mixer (IVM)

- hybrid pixel-wise and patch-wise aggregation to effective inter-viewpoint fusion..
- iterative aggregation to further improve the inter-viewpoint fusion accuracy.




# **Experiments**



# Ablation Study

#### (1) Statically evaluation of BSR and ours proposed NDS



Quantitative comparison between our NDS and BSR. We draw the normalized differences between the simulated images of the two degradation methods and the real NeRF-rendered images. The smaller values, the better results are. (2) Impact of each presented degradation case in NDS

| Models  | SGN          | Re-Pos. | A-Blur | RA       | PSNR(dB) | SSIM  |
|---------|--------------|---------|--------|----------|----------|-------|
| Model-1 | $\checkmark$ |         |        |          | 27.08    | 0.856 |
| Model-2 | 1            | 1       |        |          | 27.13    | 0.858 |
| Model-3 | 1            | 1       | 1      |          | 27.21    | 0.859 |
| Model-4 | 1            | 1       | 1      | <b>√</b> | 27.39    | 0.867 |

Table 1. Influences of different degradations used in our NeRFstyle degradation simulator. "SGN" and "RA" are shorted for splatted Gaussian noise and region-adaptive schemes and "A-Blur" refers to anisotropic Gaussian blur.

# Ablation Study

(3) Quantitative comparison between BSR and NDS

| Models              | BSR | NDS | SwIR | IVM | PSNR  | SSIM  |
|---------------------|-----|-----|------|-----|-------|-------|
| SwIR <sub>B</sub>   | 1   |     | 1    |     | 26.20 | 0.834 |
| $SwIR_{\mathbf{N}}$ |     | 1   | 1    |     | 26.82 | 0.845 |
| IVM <sub>B</sub>    | 1   |     |      | 1   | 26.40 | 0.842 |
| IVM <sub>N</sub>    |     | 1   |      | 1   | 27.39 | 0.867 |

Table 2. Comparison of our NDS and the BSR degradation models

(4) NDS enbales the resotration ability of existing image/video resotration methods for NeRF-render images.

| Model | TensoRF(Base) | SwIR <sub>N</sub> | DATSR <sub>N</sub> | EDVR <sub>N</sub> | VST <sub>N</sub> |
|-------|---------------|-------------------|--------------------|-------------------|------------------|
| PSNR  | 26.70         | 26.82             | 26.84              | 26.88             | 26.79            |
| SSIM  | 0.838         | 0.845             | 0.843              | 0.847             | 0.842            |

Table 3. Quantitative results of the improvements using existing image/video processing models trained on our simulated dataset

\*We use subscripts *N*, *B*, to represent the models trained with our NDS dataset and BSR, respectively

# Ablation Study

(5) Effects of our proposed IVM

| _           | —        |       |       |            |   |
|-------------|----------|-------|-------|------------|---|
| Method      | PSNR(dB) | SSIM  | LPIPS | Speed (ms) | • |
| Pixel-wise  | 27.13    | 0.862 | 0.179 | 230        | • |
| Patch-wise  | 27.00    | 0.854 | 0.183 | 237        |   |
| Hybrid + R1 | 27.21    | 0.865 | 0.173 | 181        | • |
| Hybrid + R2 | 27.33    | 0.866 | 0.157 | 247        |   |
| Hybrid + R3 | 27.39    | 0.867 | 0.149 | 293        | _ |

Table 4. Ablation studies of hybrid inter-viewpoint aggregation module. The running time is tested with an input size of 256×256

(6) View selection strategy

| Method         | LLFF           | Tanks and Temple |
|----------------|----------------|------------------|
| Random         | 27.06dB/ 0.856 | 28.51dB/ 0.925   |
| View Selection | 27.39dB/ 0.867 | 28.94dB/ 0.930   |

Table 5. Ablation studies of our view selection strategy.

- Both the pixel-wise and patch-wise aggregations contribute to the final results.
- More iterations, higher performance.



Our proposed view selection strategy can identify the two reference views that are most overlapped with the input (test) view.

#### Quantitative analysis of our NeRFLiX

| Method                   | PSNR (dB)↑                    | SSIM↑ | LPIPS |
|--------------------------|-------------------------------|-------|-------|
| TensoRF [7] (ECCV'22)    | 26.73                         | 0.839 | 0.204 |
| TensoRF [7] + NeRFLiX    | <b>27.39</b> ( <b>†</b> 0.66) | 0.867 | 0.149 |
| Plenoxels [16] (CVPR'22) | 26.29                         | 0.839 | 0.210 |
| Plenoxels [16] + NeRFLiX | <b>26.90</b> ( <b>†</b> 0.61) | 0.864 | 0.156 |
| NeRF-mm [59] (ARXIV'21)  | 22.98                         | 0.655 | 0.440 |
| NeRF-mm [59] + NeRFLiX   | <b>23.38</b> ( <b>†</b> 0.40) | 0.694 | 0.360 |
| NeRF [37] (ECCV'20)      | 26.50                         | 0.811 | 0.250 |
| NeRF [37] + NeRFLiX      | <b>27.26</b> (↑ 0.76)         | 0.863 | 0.159 |

Quantitative results on the LLFF under LLFF-P1.

| Method                | PSNR (dB)↑            | SSIM↑ | LPIPS |
|-----------------------|-----------------------|-------|-------|
| TensoRF [7] (ECCV'22) | 28.43                 | 0.920 | 0.142 |
| TensoRF [7] + NeRFLiX | <b>28.94</b> (↑ 0.51) | 0.930 | 0.120 |
| DIVeR [60] (CVPR'22)  | 28.16                 | 0.913 | 0.145 |
| DIVeR [60] + NeRFLiX  | <b>28.61</b> (↑ 0.45) | 0.924 | 0.127 |

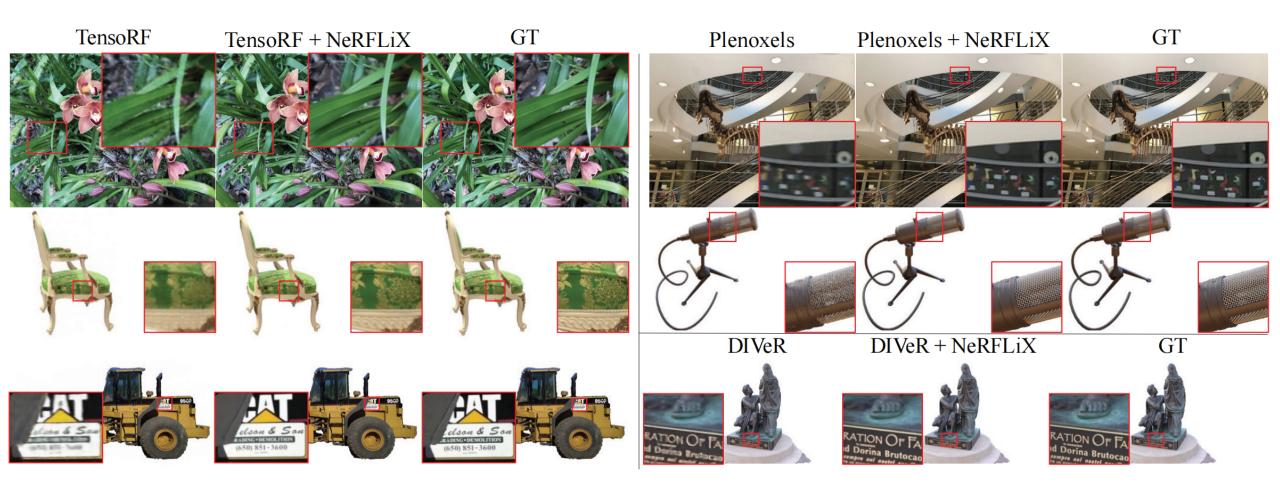
Improvement over TensoRF and DIVeR on Tanks and Temples

| Method                    | PSNR $(dB)^{\uparrow}$        | SSIM↑ | LPIPS |
|---------------------------|-------------------------------|-------|-------|
| NLF [1] (CVPR'22)         | 27.46                         | 0.868 | 0.136 |
| NLF [1] + NeRFLiX         | <b>28.19</b> ( <b>†</b> 0.73) | 0.899 | 0.093 |
| RegNeRF-V3 [39] (CVPR'22) | 19.10                         | 0.587 | 0.373 |
| RegNeRF-V3 [39] + NeRFLiX | <b>19.68</b> ( <b>↑</b> 0.58) | 0.661 | 0.260 |
| RegNeRF-V6 [39] (CVPR'22) | 23.06                         | 0.759 | 0.242 |
| RegNeRF-V6 [39] + NeRFLiX | <b>23.90</b> (↑ 0.84)         | 0.815 | 0.144 |
| RegNeRF-V9 [39] (CVPR'22) | 24.81                         | 0.818 | 0.196 |
| RegNeRF-V9 [39] + NeRFLiX | <b>25.68</b> ( <b>†</b> 0.87) | 0.863 | 0.114 |

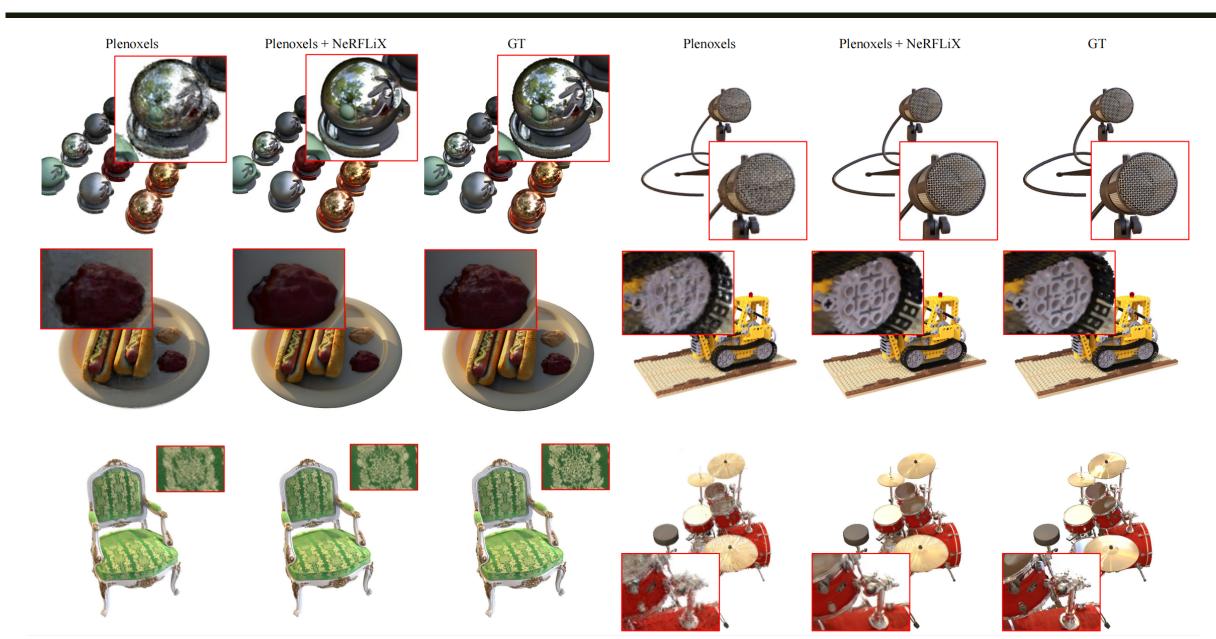
Quantitative results on the LLFF under LLFF-P2.

| Method                   | PSNR (dB)↑                    | SSIM↑ | LPIPS |
|--------------------------|-------------------------------|-------|-------|
| TensoRF [7] (ECCV'22)    | 22.83                         | 0.881 | 0.147 |
| TensoRF [7] + NeRFLiX    | <b>24.12</b> ( <b>†</b> 1.29) | 0.913 | 0.092 |
| Plenoxels [16] (CVPR'22) | 23.69                         | 0.882 | 0.127 |
| Plenoxels [16] + NeRFLiX | <b>25.51</b> († 1.82)         | 0.920 | 0.084 |

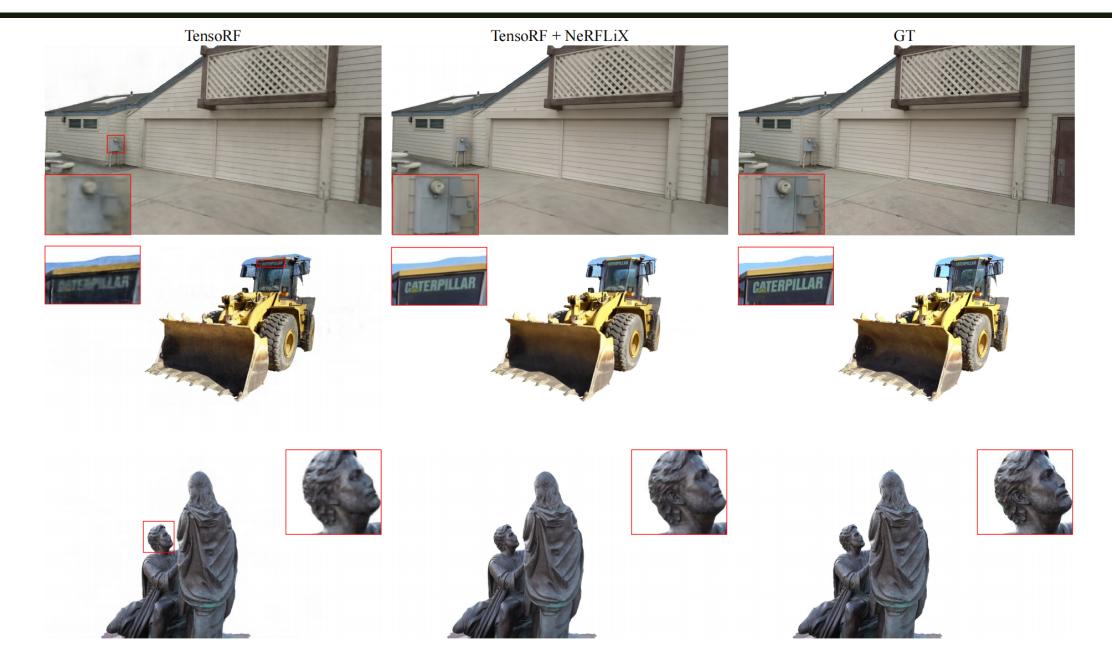
Improvement over TensoRF and Plenoxels on Noisy LLFF Synthetic


\*We adopt  $1008 \times 756$  resolution for LLFF-P1 and  $504 \times 376$  resolution for LLFF-P2

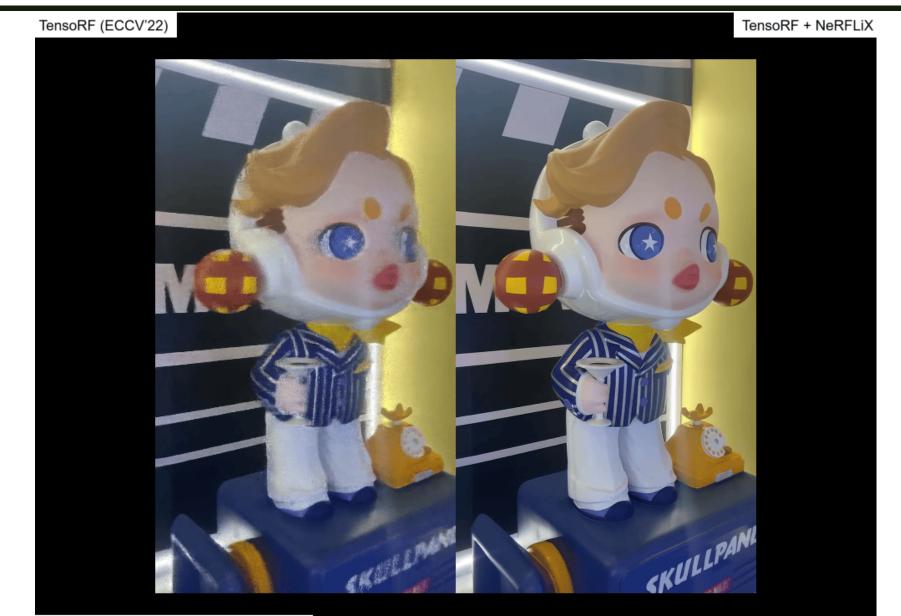
#### **Training Acceleration for NeRF Models**


| Method                          | PSNR (dB) <sup>/</sup> /SSIM <sup>/</sup> /LPIPS |
|---------------------------------|--------------------------------------------------|
| TensoRF [7](4 hours)            | 26.73/ 0.839/ 0.204                              |
| TensoRF [7](2 hours)            | 26.18/ 0.819/ 0.230                              |
| [7]( <b>2 hours</b> ) + NeRFLiX | 27.14/ 0.858/ 0.165                              |
| Plenoxels [16](24 minutes)      | 26.29/ 0.839/ 0.210                              |
| Plenoxels [16](10 minutes)      | 25.73/ 0.804/ 0.252                              |
| [16](10 minutes) + NeRFLiX      | 26.60/ 0.847/ 0.181                              |

Fewer training epoches, but better performance.


## Visualization




# Visualization



# Visualization



### Video Demo-3



Video Case 2(In-the-wild Scene 2)

# Summary

### **†** NeRFLiX has the following advantages

- not require accurate camera poses.
- regardless of building complicated inverse rendering systems to regress object materials, and environment illumination.
- ▶ no re-training costs and can directly enhance all NeRF-rendered results significantly.
- Acclerate the training phases of SOTA NeRF models, while also enhancing the rendering quality.

# **Thank You!**