Real-time 6K Image Rescaling with Rate-distortion Optimization

Chenyang Qi*, Xin Yang*, Ka Leong Cheng, Yingcong Chen, Qifeng Chen

Project link: https://github.com/AbnerVictor/HyperThumbnail

*: Equal contribution

Motivation of Our Task

Previous framework

Method	(a) Downsampled JPEG + super-resolution [36]	(b) Flow-based rescaling [35, 54]	(c) Ours		
Architecture	HR LR jpg	HR LR ĤR	HR LR jpg ĤR		
Reconstruction fidelity	×	\checkmark	\checkmark		
Rate-distortion optimization	×	×	\checkmark		
Real-time 6K reconstruction	_	×	\checkmark		

Our performance contributions

1. Best Bitrate-Distortion

- Previous: even worse than JPEG
- Ours: comparable with learned compression

2. Efficient Upscaling time

- Previous: > 1s for 4K image reconstruction
- Ours: 6K real-time under TensorRT

Figure 1. The rate-HR-distortion curve on Kodak [1] dataset. Our method (s = 2, 4) outperforms JPEG, IRN [13] and HCFlow [8] in the RD performance. Especially, for the 'QPM Only' curve, where s = 1, we follow standard JPEG algorithm and adopt QPM module as a plugin for table prediction.

Our Architecture

Rate-Distortion objective during training

Rate:

$$R = \mathbb{E}_{x \sim p_x} [-log_2 \, p_L(\widetilde{C}_Y) - log_2 \, p_C(\widetilde{C}_{Cb}) - log_2 \, p_C(\widetilde{C}_{Cr})],$$

$$L_{bpp} = \frac{R}{H \times W}.$$

Distortion:

$$L_{recon} = \frac{||\hat{x} - x||_1}{H \times W},$$

$$L_{guide} = \frac{||\hat{y} - y_{ref}||_2^2}{(H/s) \times (W/s)},$$

Total:

 $L_{rescale} = L_{recon} + \lambda_1 L_{guide} + \lambda_2 L_{bpp}.$

Quantitative result: Bitrate-Distortion-Efficiency

Method	Bitrate↓-Distortion↑ [1]		Upscaling Efficiency↓		Reconstructed HR PSNR↑					
Down & Degradation & Up	bpp	PSNR	Time (ms)	GMacs	Set5	Set14	BSD100	Urban100	DIV2K	FiveK-6k
Bicubic & JPEG & Bicubic	0.29	25.18	_	-	25.14	23.49	24.02	21.05	25.70	26.90
Bicubic & JPEG & EDSR [36]	0.29	26.77	91.0	1007.5	28.34	25.73	25.60	23.58	27.83	27.23
Bicubic & JPEG & SwinIR [34]	0.29	26.93	4012.6	6208.7	28.56	25.99	25.72	24.09	28.07	27.44
ComCNN & RecCNN [26]	0.32	27.02	469.7	6014.7	28.29	25.84	25.78	23.70	27.99	27.40
IRN [54] & JPEG	0.31	28.48	977.8	4751.7	30.00	27.23	26.91	25.72	29.54	27.96
HCFlow [35] & JPEG	0.30	28.76	1025.9	4626.0	29.98	27.41	27.05	26.19	29.71	28.01
Ours-full	0.30	29.67	247.9	1277.5	30.48	28.21	27.93	27.35	30.49	28.51
Ours	0.30	29.42	37.8	156.2	30.22	27.87	27.66	26.62	30.15	28.15

Qualitative result of reconstructed HR

Ground Truth

bpp↓ / PSNR(RGB)↑

0.324/22.82

0.296/22.47

Ours $4 \times$

0.240 / 24.32

Ours-full $4\times$

0.238 / 24.78

bpp↓/PSNR(RGB)↑

0.350/25.45

0.304/25.11

0.272 / 25.69

0.271/26.03

Figure 3. Reconstructed HR images and LR thumbnails by different methods on the DIV2K [4] validation dataset. We crop the restored HR images to ease the comparison and visualize the LR counterparts at the bottom-right. The bpp is calculated on the whole image and the PSNR is evaluated on the cropped area of the reconstructed HR images.

Evaluation of LR thumbnail

Method							
Down & Degradation	Kodak	Set5	Set14	BSD100	Urb100	DIV2K	FiveK-6k
Bicubic & JPEG	37.72	34.41	35.79	37.43	36.64	37.14	35.14
IRN [54] & JPEG	30.95	30.00	27.23	26.91	25.72	29.54	31.25
ComCNN & RecCNN [26]	28.00	26.76	26.47	27.47	25.57	28.15	28.99
HCFlow [35] & JPEG	19.88	20.08	19.42	19.65	18.96	20.52	20.31
Ours-full	33.21	31.86	31.76	32.44	31.01	33.32	33.99
Ours	33.55	31.96	31.93	32.90	31.16	33.62	34.24

Table 3. Quantitative evaluation of the $4 \times$ downsampled LR thumbnails by different methods. The target bitrate is around 0.3 bpp on Kodak [1] for all methods, and we take Bicubic LR as the ground truth. Our thumbnail preserves visual contents better.

Bicubic
 $4\times$ IRN [5]4×
& JPEG q=96HCFlow [3]4×
& JPEG q=90Ours
 $4\times$ Ours-full
 $4\times$ Image: Descent of the state o

Figure 4. Downscaled LR thumbnails by different methods on Set14 image *comic*. With a similar target bpp, our model introduces least artifacts in the thumbnail in comparison to baselines.

Compare Bit-distortion with other methods

Compare with rescaling use PNG

Figure 1. The rate-HR-distortion curve on Kodak [1] dataset. Our method (s = 2, 4) outperforms JPEG, IRN [13] and HCFlow [8] in the RD performance. Especially, for the 'QPM Only' curve, where s = 1, we follow standard JPEG algorithm and adopt QPM module as a plugin for table prediction. Compare with compression with thumbnail

Method	Bpp of Fil	le Format	Bitrate↓-Distortion↑ Kodak		
Architecture	Bitstream	JPEG	Sum of bpp	LR PSNR / HR PSNR	
Hyperprior [7]+JPEG	0.214	0.148	0.51	33.41 / 29.22	
HIFIC [39]+JPEG	0.172	0.148	0.32	33.41 / 29.35	
Ours	-	0.299	0.30	33.55 / 29.42	

Table 7. Comparison of our HyperThumbnail framework against learned compression with JPEG thumbnail. In additional baseline, we provide a JPEG thumbnail besides learned compression, and take the sum of bitstream size and JPEG size to calculate the final bpp. Our framework has better rate-distortion performance than "Compression+JPEG" baseline.

Achieve 6K real-time Reconstruction

Figure 5. Model runtime. We profile the $4 \times$ encoder and decoder at different target resolution in half-precision mode. Especially, we convert our decoder from PyTorch to TensorRT for further inference time reduction.

Ablation of Quantization Prediction Module

(a) RD curve of restored HR image (b) RD curve of LR thumbnail 35 31.0 33 30.6 31 30.2 29 (fg 29.8 29.4 29.0 28.6 28.6 ∆−Ours Optimized table Ř — Ours w/o guidance loss 19 28.2 Fixed table Ours 17 — Ours w/o guidance loss Optimized table 27.8 15 Fixed table 27.4 13 0.2 0.3 0.4 0.5 0.6 0.2 0.3 0.4 0.5 0.6 bpp bpp

Figure 7. **QPM versus image-invariant quantization.** We first train our models with QPM, with a fixed JPEG table or with an optimized table, respectively. Then, we evaluate the at different target bitrate on Kodak [1] dataset. (a) the RD curve on reconstructed HR image \hat{x} and input x; (b) the RD curve on LR thumbnail \hat{y} and the Bicubic downsampled LR y_{ref} .

Analysis and Extension

Figure 6. Quantization tables on Kodak [1] images. We visualize the quantization table Q_L (the green table) and Q_C (the orange table) for *kodim04* and *kodim09* of different quantization approaches. The model trained with QPM achieves the best RD performance from every aspect. For more analysis, please refer to Sec. 5 in our paper.

Method	Optimization	bpp↓ / HR PSNR↑				
Architecture	iteration	Kodak	Set5	Set14		
Ours	0 100	0.301 / 29.42 0.307 / 29.55	0.379 / 30.23 0.377 / 30.36	0.359 / 27.74 0.347 / 27.96		

Table 4. Quantitative evaluation for optimization-based rescaling.

Takeaways

- The first rescaling method to achieve 6K real-time decoding and sota rate-distortion performance.
- Introduce an entropy model for modeling jpeg image file size
- Demonstrate the importance of Rate-Distortion loss for practical rescaling

Thank you!