OADP Object-Aware Distillation Pyramid for Open-Vocabulary Object Detection									
Luting Wang ^{1,3}	Yi Liu ^{1,3}	Penghui Du ^{1,3} Biaolong Ch	Zihan Ding ^{1,3} en ² Si Liu ^{1,3}	Yue Liao ^{1,3} *	Qiaosong Qi ²				
		¹ IAI, BUAA ² A	libaba ³ Hii, BUAA						
		WED-	AM-281						

Abstract	Introduction	Method	Comparisons	Ablation Study
●00	00000	000000	000	0000
Table of Co	ontents			

2 Introduction

3 Method

4 Comparisons

Abstract 0●0	Introduction 00000	Method 000000	Comparisons 000	Ablation Study
Abstract				
Motivation				

Knowledge Extraction

Center Crop w/o Transform

Center Crop w/ Transform

Knowledge Transfer

Object-Aware Distillation Pyramid

Abstract	Introduction	Method	Comparisons	Ablation Study
000	●0000	000000	000	0000
Table of C	ontents			

2 Introduction

3 Method

4 Comparisons

- Most object detectors recognize only known objects.
- Real-world applications require detectors that can detect unknown objects.
- Zero-shot detectors can recognize and locate novel objects without annotations.

Rahman, Shafin, et al. "Zero-shot object detection: Learning to simultaneously recognize and localize novel concepts." ACCV. 2019.

Wang et al. (BUAA, Alibaba)

Abstract	Introduction	Method	Comparisons	Ablation Study
000	00●00	000000	000	
CLIP				

(1) Contrastive pre-training

(2) Create dataset classifier from label text

Radford, Alec, et al. "Learning transferable visual models from natural language supervision." ICML. 2021.

Open-Vocabulary Object Detection

- CLIP text encoder extracts generalizable category embeddings for open-vocabulary classification.
- CLIP visual encoder guides the object detector to learn better visual features.
- CLIP-guided detectors belong to open-vocabulary object detection (OVD).

Abstract	Introduction	Method	Comparisons	Ablation Study
000	0000●	000000	000	0000
Benchmarks				

According to the training data, we summarize the existing OVD methods into four types:

		V-OVD	C-OVD	G-OVD	WS-OVD
	Image Caption A leaping dog.		\checkmark		\checkmark
	Category Prior			\checkmark	\checkmark
Stration and an and and	Novels: dog,				
see y	frisbee, dog,				\checkmark
	Representative	ViLD	OVR-CNN	VL-PLM	Detic

Gu, Xiuye, et al. "Open-vocabulary object detection via vision and language knowledge distillation." ICLR. 2021.

Zareian, Alireza, et al. "Open-vocabulary object detection using captions." CVPR. 2021.

Zhao, Shiyu, et al. "Exploiting unlabeled data with vision and language models for object detection." ECCV. 2022.

Zhou, Xingyi, et al. "Detecting twenty-thousand classes using image-level supervision." ECCV. 2022.

Wang et al. (BUAA, Alibaba)

Abstract	Introduction	Method	Comparisons	Ablation Study
000	00000	●00000	000	
Table of Conte	nts			

2 Introduction

3 Method

4 Comparisons

Abstract Introduction Method Comparisons Ablation Study 0000

Object-Aware Knowledge Extraction

Abstract Introduction Method Comparisons Ablation Study

Object-Aware Knowledge Extraction

Abstract Introduction Method Comparisons Ablation Study

Object-Aware Knowledge Extraction

- Adaptively expand the proposals to ensure completeness
- Object features are prone to be polluted by background noise
- Introduce [OBJ] token attending to object regions only

Global Distillation

Block Distillation

Block Distillation

Distillation Pyramid

Abstract	Introduction	Method	Comparisons	Ablation Study
000	00000	000000	●00	
Table of Conte	nts			

2 Introduction

3 Method

4 Comparisons

Abstract 000	Introduction 00000	Metho 0000	od 000	Comparisons 0●0		Ablati 0000	on Study
OV-(COCO						
		Benchmark	Method	mAP_{50}^N	mAP^B_{50}	mAP ₅₀	
• \	We follow OV-RCNN		ViLD	27.6	59.5	51.3	
	and divide the MS-COCO 2017	V-OVD	RegionCLIP*	14.2	52.8	42.7	
			OADP (Ours)	30.0	53.3	47.2	
dataset	dataset into 48 base	C-OVD	OVR-CNN	22.8	46.0	39.9	
	categories and 17 novel categories.		HierKD	20.3	51.3	43.2	
			RegionCLIP	26.8	54.8	47.5	
	0		LocOV	28.6	51.3	45.7	
			PB-OVD	29.1	44.4	40.4	
•	• Our OADP achieves		OV-DETR	29.4	61.0	52.7	
	state-of-the-art	G-OVD	VL-PLM	32.3	54.0	48.3	
	performance on both V-OVD and G-OVD.		OADP (Ours)	35.6	55.8	50.5	
		WS-OVD	Detic	27.8	47.1	45.0	

Zareian, Alireza, et al. "Open-vocabulary object detection using captions." CVPR. 2021.

Abstract	Introduction	Method	Comparisons	Ablation Study
000	00000	000000	00●	
OV-LVIS				

- Some experiments are conducted under the OV-LVIS setting, where the 337 rare categories in LVIS are treated as novel categories, and the other 866 are base categories.
- \bullet Metrics for the OV-LVIS setting are APr, APc, APf, and AP.
- Both object detection and instance segmentation metrics are reported.

Mathad	Object Detection			Instance Segmentation				
Method	APr	AP_{c}	AP_{f}	AP	APr	AP_{c}	AP_{f}	AP
ViLD	16.7	26.5	34.2	27.8	16.6	24.6	30.3	25.5
DetPro	20.8	27.8	32.4	28.4	19.8	25.6	28.9	25.9
OV-DETR	-	-	-	-	17.4	25.0	32.5	26.6
OADP (Ours)	21.9	28.4	32.0	28.7	21.7	26.3	29.0	26.6

Abstract	Introduction	Method	Comparisons	Ablation Study
000	00000	000000	000	●000
Table of Conte	onts			

2 Introduction

3 Method

4 Comparisons

Abstract	Introduction	Method	Comparisons	Ablation Study
000	00000	000000	000	○●○○
Object-Awa	re Distillation P	vramid		

- We conduct ablation studies on the distillation modules in OADP.
- The baseline is our re-implemented ViLD-ensemble model.

Global	Block	Object	mAP ^N ₅₀	mAP_{50}^B	mAP ₅₀
			24.99	50.29	43.67
\checkmark			25.72	51.89	45.04
	\checkmark		27.25	53.60	46.71
		\checkmark	27.23	55.96	48.45
\checkmark	\checkmark		26.49	51.25	44.78
\checkmark		\checkmark	28.80	54.29	47.62
	\checkmark	\checkmark	29.01	55.45	48.53
\checkmark	\checkmark	\checkmark	29.95	53.26	47.17

Abstract 000	Introduct 00000	Method 000000	Comparisons 000	Ablation Study

Object-Aware Knowledge Extraction

Original

	+		
Baseline	ViLD*	MBS	Fixed
Nethod	Macro Precision w/o OAKE w/ OAKE	Weighted w/o OAKE	Precision w/ OAKE

Adaptive

Method	Macro Precision w/o OAKE w/ OAKE		Weighted Precision w/o OAKE w/ OAKE	
Baseline	58.08	-	62.04	-
ViLD*	63.36	-	65.91	-
MBS	61.70	63.83	64.81	65.82
Fixed	49.07	64.53	51.49	69.75
Adaptive	51.64	66.09	55.85	68.68

Abstract	Introduction	Method	Comparisons	Ablation Study
000	00000	000000	000	000●
Visualization				

Object-Aware Distillation Pyramid for Open-Vocabulary Object Detection

CONTACT US

- **arxiv.org/abs/2303.05892**
- **G** github.com/LutingWang/OADP
- @ liaoyue.ai@gmail.com