

End-to-End 3D Dense Captioning with Vote2Cap-DETR

Poster Session: WED-AM-275

Sijin Chen¹ Hongyuan Zhu² Xin Chen³ Yinjie Lei⁴ Gang YU³ Tao Chen^{1†}

¹ Fudan University ² Institute for Infocomm Research (I2R) & Centre for Frontier AI Research (CFAR), A*STAR, Singapore ³ Tencent PCG ⁴ Sichuan University

[†] Corresponding author.

Paper

Fudan EDL Lab

3D Dense Captioning

3D Dense Captioning requires:

- 1. Accurate localization of all objects of interests in a 3D scene;
- 2. Informative and object-centric descriptions for each instance.

Sparse and Cluttered 3D Scene

3D Dense Captioning

This is a tan cabinet. It is in the corner of the room.

JUNE 18-22, 2023

This is a chair. It is placed at a table .

This is a gray chair. It is to the left of another chair.

Motivation

Previous "detect-then-describe" pipeline:

- 1. the whole model relies on the detector's output;
- 2. huge amount of hand-crafted components.

A one-stage system (Ours):

- 1. single-stage transformer-based architecture;
- 2. parallel decoding queries to boxes and captions.

Methods

Vote2Cap-DETR Overview

Methods

Vote Query

We reformulate object queries as (*xyz*, *feat*).

 $f_{query}^{i} = Layer_{i-1} \left(f_{query}^{i-1} + FFN \left(PE\left(p_{vq} \right) \right) \right)$

Vote queries learn to:

1. shift seed points to probable locations of objects;

 $p_{vote} = p_{enc} + \Delta p_{vote} = p_{enc} + FFN_{vote} \left(f_{enc} \right)$

2. aggregate feature from the local context.

Methods

Dual Clued Captioner

To generates informative, and object-centric captions for objects, the captioner receives two streams of visual clues:

- 1. the object vote feature \mathcal{V}^q to identify the object;
- 2. looking into the local context \mathcal{V}^{s} surrounding the query \mathcal{V}^{q} .

Quantitative Results

ScanRefer validation set

	w/o additional 2D input						w/ additional 2D input										
Method	\mathcal{L}_{des}	IoU = 0.25				IoU = 0.50			IoU = 0.25					IoU = 0.50			
		C↑	B- 4↑	M↑	R↑	C↑	B- 4↑	M↑	R↑	C↑	B-4↑	M↑	R↑	C↑	B- 4↑	M↑	R↑
Scan2Cap [13]		53.73	34.25	26.14	54.95	35.20	22.36	21.44	43.57	56.82	34.18	26.29	55.27	39.08	23.32	21.97	44.78
MORE [20]		58.89	35.41	26.36	55.41	38.98	23.01	21.65	44.33	62.91	36.25	26.75	56.33	40.94	22.93	21.66	44.42
SpaCap3d [39]		58.06	35.30	26.16	55.03	42.76	25.38	22.84	45.66	63.30	36.46	26.71	55.71	44.02	25.26	22.33	45.36
3DJCG [4]	MLE	60.86	39.67	27.45	59.02	47.68	31.53	24.28	51.80	64.70	40.17	27.66	59.23	49.48	31.03	24.22	50.80
D3Net [7]		-	-	-	-	-	-	-	-	-	-	-	-	46.07	30.29	24.35	51.67
Ours		71.45	39.34	28.25	59.33	61.81	34.46	26.22	54.40	72.79	39.17	28.06	59.23	59.32	32.42	25.28	52.53
χ -Trans2Cap [43]		58.81	34.17	25.81	54.10	41.52	23.83	21.90	44.97	61.83	35.65	26.61	54.70	43.87	25.05	22.46	45.28
Scan2Cap [13]		-	-	-	-	-	-	-	-	-	-	-	-	48.38	26.09	22.15	44.74
D3Net [7]	SCST	-	-	-	-	-	-	-	-	-	-	-	-	62.64	35.68	25.72	53.90
Ours		84.15	42.51	28.47	59.26	73.77	38.21	26.64	54.71	86.28	42.64	28.27	59.07	70.63	35.69	25.51	52.28

Nr3D validation set

Method	\mathcal{L}_{des}	C@0.5↑	B-4@0.5↑	M@0.5↑	R@0.5↑
Scan2Cap [13]		27.47	17.24	21.80	49.06
SpaCap3d [39]		33.71	19.92	22.61	50.50
D3Net [7]	MIE	33.85	20.70	23.13	53.38
3DJCG [4]	NILE	38.06	22.82	23.77	52.99
Ours		43.84	26.68	25.41	54.43
χ -Tran2Cap [43]		33.62	19.29	22.27	50.00
D3Net [7]	SCST	38.42	22.22	24.74	54.37
Ours		45.53	26.88	25.43	54.76

Quantitative Results

Scan2Cap Benchmark

This table lists the benchmark results for the Scan2Cap Dense Captioning Benchmark scenario.

			Captionin	g F1-Score		Dense Captioning	Object Detection
Method	Info	CIDEr@0.5IoU	BLEU-4@0.5IoU	Rouge-L@0.5IoU	METEOR@0.5IoU	DCmAP	mAP@0.5
netriou		•	∇	\bigtriangledown	∇	∇	∇
ote2cap-detr		0.3128 1	0.1778 1	0.2842 1	0.1316 1	0.1825 1	0.4454 1
FM		0.2360 2	0.1417 2	0.2253 2	0.1034 2	0.1379 5	0.3008 5
M3D-Trans+		0.2348 3	0.1383 3	0.2250 4	0.1030 3	0.1398 4	0.2966 7
ufeng Zhong, Long Xu, Jiebo	o Luo, Lin Ma: Cor	ntextual Modeling for 3D De	nse Captioning on Point 0	Clouds.			
orest-xyz		0.2266 4	0.1363 4	0.2250 3	0.1027 4	0.1161 10	0.2825 10
3Net - Speaker	Р	0.2088 5	0.1335 6	0.2237 5	0.1022 5	0.1481 3	0.4198 2
Dave Zhenyu Chen, Qirui Wu ECCV), 2022	, Matthias Niessne	er, Angel X. Chang: D3Net: A	A Unified Speaker-Listene	r Architecture for 3D Dense	Captioning and Visual Grounding	. 17th European Conferenc	e on Computer Vision
BDJCG(Captioning)	Ρ	0.1918 6	0.1350 <mark>5</mark>	0.2207 6	0.1013 6	0.1506 2	0.3867 3
Daigang Cai, Lichen Zhao, Jir	ng Zhang†, Lu She	eng, Dong Xu: 3DJCG: A Un	ified Framework for Joint	Dense Captioning and Visua	al Grounding on 3D Point Clouds	. CVPR2022 Oral	
REMAN		0.1662 7	0.1070 7	0.1790 7	0.0815 7	0.1235 8	0.2927 9

*Ranked 1st on the ScanRefer online test benchmark, <u>https://kaldir.vc.in.tum.de/scanrefer_benchmark/benchmark_captioning</u>

Study on Components

> Does the vote query improve 3DETR?

Comparison to other 3DETR attempts. We compare detection performance of different methods that improve 3DETR in the 20k, 40k, 80k, 160k -th iteration.

Model	Modification	(20k)AP@0.5↑	(40k)AP@0.5↑	(80k)AP@0.5↑	(160k)AP@0.5↑
3DETR-m	-	28.26	37.27	43.41	48.18
3DETR-m	hybrid	35.10	42.72	45.83	47.50
3DETR-m	anchor	22.94	28.85	35.44	40.06
Vote2Cap-DETR	-	32.70	40.90	47.62	52.49

Does 3D context feature help captioning?

Different keys for caption generation. Introducing local contextual information leads to more informative and object-centric captions.

key		IoU=0.25					IoU=0.5				
	C↑	B- 4↑	M↑	R↑		C↑	B- 4↑	M↑	R↑		
-	68.62	38.61	27.67	58.47		60.15	34.02	25.80	53.82		
global	70.05	39.23	27.84	58.44		61.20	34.66	25.93	53.79		
local	70.42	39.98	27.99	58.89		61.39	35.24	26.02	54.12		

Qualitative Results

scene0011_00

3DJCG: This is a rectangular whiteboard. It is <u>on the wall</u>.

SpaCap3D: The whiteboard is affixed to the wall. It is to the right of the window.

Ours: The tv is <u>on the wall</u>. It is to the right of the table.

GT: This is a big black tv. It is above a thin table.

scene0015_00

3DJCG: This is a brown table. It is in the middle of the room.

SpaCap3D: This is a wooden table. It is in the center of the room.

Ours: This is a wooden table. It is in the corner of the room.

GT: This is a small table with a wood look. It is the table closest to the front of the room in the upper left corner.

scene0025_00

3DJCG: The is a small brown cabinet. It is to the right of the desk.

SpaCap3D: The cabinet is below the desk. It is to the left of the chair.

Ours: This is a white cabinet. It is to the right of the table.

GT: A white cabinet is sitting on the floor next to the wall. It is to the left of the couch.

scene0050_00

3DJCG: This is a brown table. It is <u>in front of the couch</u>.

SpaCap3D: This is a wooden coffee table. It is in front of the couch.

Ours: This is a brown ottoman. It is to the right of the chair.

GT: This is a brown ottoman. It is in front of a couch.

Visualization: Vote Queries

Visualization: Detection Results

Conclusions

We introduce a novel one-stage method to 3D dense captioning:

- 1. By introducing spatial bias and content-aware features, **vote queries** boost both convergence and detection performance.
- 2. The novel lightweight caption head looks into both query feature and **local contexts** for informative caption generation.

Thanks!

Paper

Code

Fudan EDL Lab

