

RiDDLE : Reversible and Diversified **De-identification** with Latent Encryptor

Dongze Li^{1,2}, Wei Wang^{2*}, Kang Zhao³, Jing Dong², Tieniu Tan^{2,4}

¹ School of Artificial Intelligence, University of Chinese Academy of Sciences
² Center for Research on Intelligent Perception and Computing, CASIA
³ Alibaba Group ⁴ Nanjing University

Background: Face De-identification

To hide the identity information of face images for privacy protection

Motivation

Drawbacks of Current Works

Lack of diversity

Different People

Anonymous faces with similar appearance

Fix: Identity diversity loss term

Irreversible

Poor Quality

Fix: Password Scheme

Fix: StyleGAN

Our Solution:

Reversible and Diversified De-identification with Latent Encryptor (RiDDLE)

Latent Space Identity Encryption and Decryption

During encryption Each password is associated with a unique identity.

During decryption Password is correct? -> Recover the original identity. Password is incorrect? -> Return a wrong identity with realism. RiDDLE also supports data-free training by randomly sampling latents with StyleGAN

Loss Functions

De-identification and Recovery

Maintaining Image Quality and Utility

 $\mathcal{L}_{pix} = \|\mathbf{x} - \mathbf{x}^*\|_1.$ Image level reconstruction $\mathcal{L}_{LPIPS} = \|F_p(\mathbf{x}) - F_p(\mathbf{x}^*)\|_2$ Feature level reconstruction $\mathcal{L}_{parse} = \|F_s(\mathbf{x}) - F_s(\mathbf{x}^*)\|_2.$ Avoid unreal face features $\mathcal{L}_{latent} = \|\mathbf{w} - \mathbf{w}^*\|_2.$ Latent space regularization

Final Loss Term

$$\mathcal{L}_{total} = \mathcal{L}_{id} + \lambda_{pix} \mathcal{L}_{pix} + \lambda_{LPIPS} \mathcal{L}_{LPIPS} + \lambda_{parse} \mathcal{L}_{parse} + \lambda_{latent} \mathcal{L}_{latent}.$$

Results: Qualitative

De-identification

Diverse Identity Generation

Recovery

Results in the wild

Results: Quantitative

De-identification / Recovery

Туре	Method	FaceNet CASIA	FaceNet VGGFace2	SphereFace
	Ours	0.016	0.032	0.025
De-id ↓	Ours-DF	0.034	0.037	0.025
	CIAGAN [17]	0.019	0.034	0.010
	FIT [7]	0.042	0.072	0.065
	Personal [4]	0.020	0.042	0.017
	DeepPrivacy [10]	0.266	0.184	0.120
Recovery ↑	Ours	0.996	0.998	1.000
	Ours-DF	0.953	0.949	1.000
	FIT [7]	0.967	0.974	1.000
	Personal [4]	0.965	0.965	0.998

Recovered Image Quality

	MSE↓	LPIPS↓	SSIM ↑	PSNR↑
FIT [7]	0.005	0.186	0.934	23.130
Personal [4]	0.003	0.220	0.846	26.391
Ours	0.002	0.043	0.966	26.499
Ours-DF	0.004	0.277	0.760	25.483

Image Utility

Method		Ours	Ours-DF	CIAGAN [17]	FIT [7]	Personal [4]	DeepPrivacy [10]
FID ↓		15.389	26.802	32.611	30.331	25.715	23.713
Face detection ↑	MtCNN	1.000	1.000	0.992	1.000	1.000	1.000
	Dlib	0.991	0.975	0.937	0.984	0.992	0.980
Bounding box	MtCNN	3.824	5.720	20.387	7.879	4.213	4.654
distance ↓	Dlib	1.700	3.109	15.476	4.218	2.726	2.685
Landmark	MtCNN	1.674	3.252	8.042	3.572	2.358	3.280
distance ↓	Dlib	1.512	2.973	8.930	4.047	2.459	2.896

Diversity

Ablation Study

Qualitative

Quantitative

	De-id↓	Recovery ↑	$\mathrm{FID}\downarrow$
w/o data	0.034	0.953	26.802
w/o transformer	0.018	0.985	22.704
w/o identity diversity loss	0.025	0.993	25.816
full	0.016	0.996	15.389

- w/o data -> Degradation in quality, higher privacy level
- ➢ w/o identity diversity loss -> Naïve De-identification
- ➢ w/o transformer -> Degradation in quality

- > Expose the drawbacks of the current face de-identification methods.
- Propose a de-identification method based on a novel latent encryptor and a password scheme.
- Our method achieves better quality, higher diversity and stronger reversibility on various face datasets and in the wild images.

Thanks