



# MSF: Motion-guided Sequential Fusion for Efficient 3D Object Detection from Point Cloud Sequences

Paper Tag: TUE-PM-101

Chenhang He, Ruihuang Li, Yabin Zhang, Shuai Li, Lei Zhang

The Hong Kong Polytechnic University

Code: <a href="https://github.com/skyhehe123/VoxSeT">https://github.com/skyhehe123/VoxSeT</a>





## Motivation





#### **Motion-guided Sequential Fusion**



Envision Future COMPUTING Computing for the FUTURE





| Method            | ALL (3D mAPH) |       | Vehicle (AP/APH) |             | Pedestrian (AP/APH) |             | Cyclist (AP/APH) |             |
|-------------------|---------------|-------|------------------|-------------|---------------------|-------------|------------------|-------------|
|                   | L1            | L2    | L1               | L2          | L1                  | L2          | L1               | L2          |
| PointPillar [9]   | -             | -     | 68.10            | 60.10       | 68.00/55.50         | 61.40/50.10 | -                | -           |
| StarNet [15]      | Ξ.            | -     | 61.00            | 54.50       | 67.80/59.90         | 61.10/54.00 | 200              | -           |
| M3DETR [5]        | 67.1          | 61.9  | 77.7/77.1        | 70.5/70.0   | 68.2/58.5           | 60.6/52.0   | 67.3/65.7        | 65.3/63.8   |
| 3D-MAN [31]       | 2             | -     | 78.28            | 69.98       | 69.97/65.98         | 63.98/60.26 | -                | -           |
| PV-RCNN++ [22]    | 75.7          | 70.2  | 81.6/81.2        | 73.9/73.5   | 80.4/75.0           | 74.1/69.0   | 71.9/70.8        | 69.3/68.2   |
| CenterPoint [33]  | 77.2          | 71.9  | 81.1/80.6        | 73.4/73.0   | 80.5/77.3           | 74.6/71.5   | 74.6/73.7        | 72.2/71.3   |
| RSN [26]          | -             | -     | 80.30            | 71.60       | 78.90/75.60         | 70.70/67.80 | 2.00             | -           |
| SST-3f [3]        | 78.3          | 72.8  | 81.0/80.6        | 73.1/72.7   | 83.3/79.7           | 76.9/73.5   | 75.7/74.6        | 73.2/72.2   |
| MPPNet [2]        | 80.59         | 75.67 | 84.27/83.88      | 77.29/76.91 | 84.12/81.52         | 78.44/75.93 | 77.11/76.36      | 74.91/74.18 |
| CenterFormer [37] | 80.91         | 76.29 | 85.36/84.94      | 78.68/78.28 | 85.22/ 82.48        | 80.09/77.42 | 76.21/75.32      | 74.04/73.17 |
| MSF (ours)        | 81.74         | 76.96 | 86.07/85.67      | 79.20/78.82 | 85.99/83.10         | 80.61/77.82 | 77.29/76.44      | 75.09/74.25 |





Envision Future COMPUTING Computing for the FUTURE

# Motivation

- The ``Detect-and-Fuse'' framework
  - Redundant computation on background
  - Introduce congestion and latency if  $T_{net} > T_{data}$
- MSF MSF

**Detect-n-Fuse** 



- Reuse the region-of-interest in preceding frames
- Be efficient as a single-frame detector

Envision Future COMPUTING Computing for the FUTURE



Points Points

Pool

R-Net

Pool

Propagate

Points

Pool







#### Motion-guided Sequential Pooling

• Pooling by propagating the proposals generated on the current frame to preceding frames based on their estimated velocities  $(v_x, v_y)$ 

$$(x^{t} - p_{x} + v_{x} \cdot \Delta t)^{2} + (y^{t} - p_{y} + v_{y} \cdot \Delta t)^{2} < (\frac{d^{t}}{2})^{2},$$

Geometric & Motion Encoding

$$g_i^t = \text{MLP}(\mathcal{S}(\{l_i^t - b_j^t\}_{j=0}^8)), \text{ for } i = 1, ..., K,$$

$$m_i^t = \text{MLP}(\text{Concat}(\{l_i^t - b_j^0\}_{j=0}^8, \Delta t)), \text{ for } i = 1, ..., K.$$



Envision Future COMPUTING Computing for the FUTURE

0/1/2U23



### **Region-based Network**

- Intra-frame Fusion
  - Self-Attention
  - FFN
- Cross-frame Fusion
  - Bidirectional Feature Aggregation

 $h_F^t = \operatorname{Conv}(\operatorname{Concat}(f^t,\operatorname{Repeat} \circ \operatorname{Max-pool}(f^{t-1})))$ 

 $h_B^t = \operatorname{Conv}(\operatorname{Concat}(h_F^t,\operatorname{Repeat}\circ\operatorname{Max-pool}(h_F^{t+1})))$ 



Envision Future COMPUTING Computing for the FUTURE

0/1/2U23



## Efficient Pooling with Voxel-Sampling



Figure 3. Illustration of our optimized point cloud pooling method. We first perform intra-voxel sampling to keep a fixed number of points in each voxel. Then we query  $n \times n$  voxels fields for each proposal and uniformly draw points from the non-empty voxels within.

| 9                   | <i>N</i> =168k | <i>N</i> =674k | <i>N</i> =1382k |
|---------------------|----------------|----------------|-----------------|
| Cylindrical Pooling | 8.2ms          | 25.2ms         | 40.1ms          |
| Our Optimized       | 2.3ms          | 3.4ms          | 5.0ms           |

Table 2. The latency of point cloud pooling on 1-frame, 4-frames and 8-frames sequences.



#### Experiments

| Mathed            | Frances | ALL (3D mAPH) |       | Vehicle (AP/APH)    |             | Pedestrian (AP/APH) |             | Cyclist (AP/APH) |               |
|-------------------|---------|---------------|-------|---------------------|-------------|---------------------|-------------|------------------|---------------|
| Method            | Frames  | Ll            | L2    | L1                  | L2          | Ll                  | L2          | L1               | L2            |
| SECOND [28]       | 1       | 63.05         | 57.23 | 72.27/71.69         | 63.85/63.33 | 68.70/58.18         | 60.72/51.31 | 60.62/59.28      | 58.34/57.05   |
| PointPillar [9]   | 1       | 63.33         | 57.53 | 71.60/71.00         | 63.10/62.50 | 70.60/56.70         | 62.90/50.20 | 64.40/62.30      | 61.90/59.90   |
| IA-SSD [35]       | 1       | 64.48         | 58.08 | 70.53/69.67         | 61.55/60.80 | 69.38/58.47         | 60.30/50.73 | 67.67/65.30      | 64.98/62.71   |
| LiDAR R-CNN [10]  | 1       | 66.20         | 60.10 | 73.50/73.00         | 64.70/64.20 | 71.20/58.70         | 63.10/51.70 | 68.60/66.90      | 66.10/64.40   |
| RSN [26]          | 1       | +             | -     | 75.10/74.60         | 66.00/65.50 | 77.80/72.70         | 68.30/63.70 |                  |               |
| PV-RCNN [21]      | 1       | 69.63         | 63.33 | 77.51/76.89         | 68.98/68.41 | 75.01/65.65         | 66.04/57.61 | 67.81/66.35      | 65.39/63.98   |
| Part-A2 [24]      | 1       | 70.25         | 63.84 | 77.05/76.51         | 68.47/67.97 | 75.24/66.87         | 66.18/58.62 | 68.60/67.36      | 66.13/64.93   |
| Centerpoint [33]  | 1       | -             | 65.50 | -                   | -/66.20     | -                   | -/62.60     | -                | -/67.60       |
| VoTR [14]         | 1       | -             |       | 74.95/74.25         | 65.91/65.29 | -                   | -           | -                | ( <b>H</b> )) |
| VoxSeT [6]        | 1       | 72.24         | 66.22 | 74.50/74.03         | 65.99/65.56 | 80.03/72.42         | 72.45/65.39 | 71.56/70.29      | 68.95/67.73   |
| SST-1f [3]        | 1       | (H)           |       | 76.22/75.79         | 68.04/67.64 | 81.39/74.05         | 72.82/65.93 | (# C             | (*)           |
| SWFormer-1f [25]  | 1       | -             | -     | 77.8/77.3           | 69.2/68.8   | 80.9/72.7           | 72.5/64.9   | -                | -             |
| PillarNet [20]    | 1       | 74.60         | 68.43 | 79.09/78.59         | 70.92/70.46 | 80.59/74.01         | 72.28/66.17 | 72.29/71.21      | 69.72/68.67   |
| PV-RCNN++ [22]    | 1       | 75.21         | 68.61 | 79.10/78.63         | 70.34/69.91 | 80.62/74.62         | 71.86/66.30 | 73.49/72.38      | 70.70/69.62   |
| 3D-MAN [31]       | 16      | -             | 4     | 74.53/74.03         | 67.61/67.14 | 71.7/67.7           | 62.6/59.0   |                  | (4)           |
| SST-3f [3]        | 3       |               |       | 78.66/78.21         | 69.98/69.57 | 83.81/80.14         | 75.94/72.37 | . <del>.</del>   |               |
| SWFormer-3f [25]  | 3       | 343           | 2     | 79.4/78.9           | 71.1/70.6   | 82.9/79.0           | 74.8/71.1   | (#C)             |               |
| CenterFormer [37] | 4       | 77.0          | 73.2  | 78.1/77.6           | 73.4/72.9   | 81.7/78.6           | 77.2/74.2   | 75.6/74.8        | 73.4/72.6     |
| CenterFormer [37] | 8       | 77.3          | 73.7  | 78.8/78.3           | 74.3/73.8   | 82.1/79.3           | 77.8/75.0   | 75.2/74.4        | 73.2/72.3     |
| MPPNet [2]        | 4       | 79.83         | 74.22 | 81.54/81.06         | 74.07/73.61 | 84.56/81.94         | 77.20/74.67 | 77.15/76.50      | 75.01/74.38   |
| MPPNet [2]        | 16      | 80.40         | 74.85 | 82.74/ <b>82.28</b> | 75.41/74.96 | 84.69/82.25         | 77.43/75.06 | 77.28/76.66      | 75.13/74.52   |
| MSF (ours)        | 4       | 80.20         | 74.62 | 81.36/80.87         | 73.81/73.35 | 85.05/82.10         | 77.92/75.11 | 78.40/77.61      | 76.17/75.40   |
| MSF (ours)        | 8       | 80.65         | 75.46 | 82.83/82.01         | 75.76/75.31 | 85.24/82.21         | 78.32/75.61 | 78.52/77.74      | 76.32/75.47   |

Table 3. Performance comparison on the validation set of Waymo Open Dataset.

6/1/2023

Envision Future COMPUTING Computing for the FUTURE



### Experiments

| Mathad            | ALL (3D mAPH) |       | Vehicle (AP/APH) |             | Pedestrian (AP/APH) |             | Cyclist (AP/APH) |              |
|-------------------|---------------|-------|------------------|-------------|---------------------|-------------|------------------|--------------|
| wiethou           | Ll            | L2    | L1               | L2          | L1                  | L2          | L1               | L2           |
| PointPillar [9]   | -             | -     | 68.10            | 60.10       | 68.00/55.50         | 61.40/50.10 | -                | ( <b>1</b> ) |
| StarNet [15]      | Ξ.            | -     | 61.00            | 54.50       | 67.80/59.90         | 61.10/54.00 | 200              | -            |
| M3DETR [5]        | 67.1          | 61.9  | 77.7/77.1        | 70.5/70.0   | 68.2/58.5           | 60.6/52.0   | 67.3/65.7        | 65.3/63.8    |
| 3D-MAN [31]       | 2             | -     | 78.28            | 69.98       | 69.97/65.98         | 63.98/60.26 | -                | -            |
| PV-RCNN++ [22]    | 75.7          | 70.2  | 81.6/81.2        | 73.9/73.5   | 80.4/75.0           | 74.1/69.0   | 71.9/70.8        | 69.3/68.2    |
| CenterPoint [33]  | 77.2          | 71.9  | 81.1/80.6        | 73.4/73.0   | 80.5/77.3           | 74.6/71.5   | 74.6/73.7        | 72.2/71.3    |
| RSN [26]          | -             | -     | 80.30            | 71.60       | 78.90/75.60         | 70.70/67.80 | 2. <del></del>   |              |
| SST-3f [3]        | 78.3          | 72.8  | 81.0/80.6        | 73.1/72.7   | 83.3/79.7           | 76.9/73.5   | 75.7/74.6        | 73.2/72.2    |
| MPPNet [2]        | 80.59         | 75.67 | 84.27/83.88      | 77.29/76.91 | 84.12/81.52         | 78.44/75.93 | 77.11/76.36      | 74.91/74.18  |
| CenterFormer [37] | 80.91         | 76.29 | 85.36/84.94      | 78.68/78.28 | 85.22/ 82.48        | 80.09/77.42 | 76.21/75.32      | 74.04/73.17  |
| MSF (ours)        | 81.74         | 76.96 | 86.07/85.67      | 79.20/78.82 | 85.99/83.10         | 80.61/77.82 | 77.29/76.44      | 75.09/74.25  |

Table 4. Performance comparison on the test set of Waymo Open Dataset.



#### Discussion

- Propagated proposals have the same size over the sequence, thus avoiding the use of proxy points to maintain a consistent representation over the sequence.
- Raw point-based features can achieve higher accuracy with self-attention layers.

| Config        | Vehicle.      | Pedestrian.   | Cyclist       |
|---------------|---------------|---------------|---------------|
| Raw + SA      | 73.35         | 75.11         | 75.40         |
| Proxy + SA    | 73.12 (-0.23) | 74.20 (-0.91) | 74.32 (-1.08) |
| Proxy + Mixer | 73.45(+0.10)  | 74.13 (-0.98) | 74.39 (-1.01) |



Figure 4. Comparison of the runtime of different methods.

| Table 9. The runtime decomposition of MPPNe | et and | MSF. |
|---------------------------------------------|--------|------|
|---------------------------------------------|--------|------|

| М         | PPNet           | MSF            |       |
|-----------|-----------------|----------------|-------|
| MLP-Mixer | Cross-Attention | Self-Attention | BiFA  |
| 75 ms     | 24 ms           | 36 ms          | 12 ms |







- A novel Bidirectional Feature Aggregation (BiFA) module is introduced to facilitate the interactions of proposal features across frames.
- The point cloud pooling method is optimized with a voxel-based sampling technique, which significantly reduces the runtime on large-scale point cloud sequence.

The code is available at https://github.com/skyhehe123/MSF

Envision Future COMPUTING Computing for the FUTURE

JUNE 18-22, 2023