2050: An Al Odyssey: Dark Matter of Intelligence

Yejín Choí

University of Washington \& A/2

What CVPR 2050 be like?

Venue: metaverse?

What CVPR 2050 be like?

Venue: mars?

What CVPR 2050 be like?

ChatGPT writes the paper
ChatGPT reviews the paper ChatGPT rebuttal period Diffusion generates slides NeRF presents the talk

ChatGPT summarizes the talk?

Few-shot prompting $\&$ Instruction tuning?

NeRF? Diffusion? Transformers?
Autonomous driving? cleaning? plumbing? babyseating?

LLMs (or LVMs?) as prior? Scaling laws no more?

ChatGPT writes the ChatGPT reviews the ChatGPT rebuttal F Diffusion generates

What CVPR 2050 be like?

We haven't solved a dog level embodied Al^{\prime} yet!

AGI is just 5-10 years away!!
We haven't solved compositionality yet!

2050: An Al Odyssey

Prolog: what CVPR 2050 be like
Chapter 1: The Possible Impossibilities Chapter 2: The Impossible Possibilities Chapter 3: The Paradox

Epilog: why am I even here? A confession of an alien

The Possible Impossibilities?

AGI is seemingly around the corner; Is there really anything "impossible" with GPT5/6/7?
"in this field, almost everything is already discovered, and all that remains is to fill a few unimportant holes"
"I don't wish to discover new things, only to u
f.
(i) Quantum Physics

Fast forward to the 20th/2ist cent. ...

Dark Matter Schrödinger's cat Wave-particle duality Spacetime continuum

Fast forward to the 20th/21st cent. ...

Dark Matter
Schrödinger's cat Wave-particle duality Spacetime continuum

Possible impossibilities Impossible possibilities Commonsense paradox Moravec's paradox Generative Al paradox

The Possible Impossibilities?

In the limit,

- can AGI arrive without embodiment?
- can RLHF fully align LLMs to factuality?
- can Transformers truly master compositionally?

Faith and Fate: Limits of Transformers on

 Compositionality

Peter West, Chandra Bhagavatula, Ronan Le Bras, Jena Hwang, Soumya Sanyal, Sean Welleck, Xiang Ren, Allyson Ettinger, Zaid Harchaoui Yejin Choi

Does sparks of AGl (i.e., GPT4) solve multiplication?

Multiply 999 by 867.

Therefore, 999 multiplied by 867 equals 866,733 .

The correct answer is 866,133

Does sparks of AGI (i.e., GPT4) solve multiplication?

Multiply 999 by 867.

The product of multiplying 999 by 867 is 824,133 .

The correct answer is 866,133

GPT4 achieves only 59\% accuracy on 3-digit x 3-digit multiplication.

4\% accuracy for 4×4 multiplication!
0% accuracy for 5×5 multiplication!

Kevin Patrick Murphy
@sirbayes
I like this paper. They prove that transformers are guaranteed to suffer from compounding errors when doing long reasoning chains (as @ylecu has argued), and much apparent "success" is just due to unreliable pattern matching / shortcut learning.

5:21 PM • Jun 15, 2023 • 266.1K Views

236 Retweets 12 Quotes 1,392 Likes 85

Best paper I've read in a while. No excessive hype, clear question, rigorous empirical evaluation. Highly recommended.
arxiv.org/abs/2305.18654

Cornell University

Computer Science > Computation and Language
arXiv:2305.18654 (cs)
[Submitted on 29 May 2023 (v1), last revised 1 Jun 2023 (this version, v2)]
Faith and Fate: Limits of Transformers on Compositionality
Nouha Dziri, Ximing Lu, Melanie Sclar, Xiang Lorraine Li, Liwei Jiang, Bill Yuchen Lin, Peter West, Chandra Bhagavatula, Ronan Bras, Jena D. Hwang, Soumya Sanyal, Sean Welleck, Xiang Ren, Allyson Ettinger, Zaid Harchaoui, Yejin Choi

Does SUPERVISED TRAINING on 1.8 million examples* solve multiplication? (W/ GPT3)

Multiply 999 by 867.
Davinci
The product is 865,233 .
The correct answer is 866,133

GPT3 fine-tuned achieves only 55\% accuracy on 3digit x 3-digit multiplication.

Exhaustively training on the task examples does not solve multiplication!

Maybe tokenization is the issue ... ??

Let's train GPT2 from scratch on multiplication data.

SUPERVISED Training with Correct Tokenization will do it? (w/ GPT2-XL from scratch ...)

Each digit is assigned to one token

Each math symbol (e.g. "=" , "x") is assigned to one token

Multiply 999 by 867.
GPT2-XL

The product is 865,233 .

Train up to 4×4 (90M*)

The correct answer is 66,233

Tokenization does not seem the issue for the low performance!

GPT2-XL achieves only 10\% accuracy on 3-digit x 3digit multiplication.

It's just a matter of step-by-step? (w/ GPT4 + scratchpad*)

* We consider 5 -shot 3×3 examples in each prompt.

It's just a matter of step-by-step? (w/ GPT4 + scratchpad*)

Wait, didn't previous work said "transformers absolutely can learn true multi-step algorithms in-context"???

Thomas Miconi

@ThomasMiconi
Interesting, but... Isn't that in opposition to Zhou et al. 2022?

How about fine-tuning GPT3 on scratchpad?

*Cost for 4 epochs

How about fine-tuning GPT3 on scratchpad?

How about fine-tuning* GPT3 on scratchpad?

GPT3 achieves 96\% accuracy on in-distribution data but drops sharply to zero on OOD multiplication data.

Why does this happen? Can we understand Transformers'
behaviour via computation graphs?

Computation graph for 49×7


```
function multiply (a[1:p], b[1:q]):
for i = q to 1
        carry = 0
        for j = p to 1
        t = a[j] * b[i]
        t += carry (only if j != p)
        digits[j] = t mod 10
        carry = t // 10
        summands[i] = digits
    product = 泣=1 summands[q+1-i] \ 10-1
    return product
```


Model Performance Decreases as Graph Complexity

 Increases
Graph Complexity

graph width: mode of $\{d(v): v \in V\}$
graph depth: the largest layer number in the graph

$49 \times 7=343$

What is the correlation between a model generating a correct output and having seen relevant subgraphs during training?

Detect subgraphs already seen during training: ant subgraphs during training, the interence is onny seemingly highly compositional

Transformers' successes are heavily linked to having seen significant portions of the required computation graph during training

Fine-tuned GPT3-Multiplication

Fine-tuned GPT3 - Dynamic Programming

What Types of Errors do Transformers Make at Different Reasoning Depths?

Error Type

Fully Correct: v and ancestors have correct values and are derivt Local Error: v is derived from an incorrect computation but its ar Propagation Error: v is derived from a correct computation but Restoration Error: v has a correct value but is derived from an ir 曷

Transformers' performance will rapidly decay with increased task complexity

D Theoretical Results: Derivations
D. 1 Transformers struggle with problems with increasingly larger parallelism (width)

Proposition D.1. Let $\left.f_{n}(\mathbf{x})=h_{n}(g(\mathbf{x}, 1), g(\mathbf{x}, 2)), \ldots, g(\mathbf{x}, n)\right)$. Let $\widehat{h}_{n}, \widehat{g}, \hat{f}_{n}$ be estimators of h_{n}, g, f_{n} respectively. Assume $\mathbb{P}\left(h_{n}=\hat{h}_{n}\right)=1$ and $\mathbb{P}\left(h_{n}(X)=h_{n}(Y) \mid X \neq Y\right)<\beta \alpha^{n}$ for some $\alpha \in(0,1)$ and $\beta>0$ (i.e. \hat{h}_{n} perfectly estimates h_{n}, and h_{n} is almost injective). If $\mathbb{P}(g \neq \widehat{g})=\epsilon>0$ and errors in \widehat{g} are independent, then $\lim _{n \rightarrow+\infty} \mathbb{P}\left(f_{n} \neq \hat{f}_{n}\right)=1$.

Proof. For ease of writing, let $X_{i}=g(X, i)$ and $Y_{i}=\widehat{g}(X, i)$, and let $\boldsymbol{X}=\left(X_{1}, \ldots, X_{n}\right)$ and $\boldsymbol{Y}=\left(Y_{1}, \ldots, Y_{n}\right)$. We will compute some auxiliary probabilitits, and then upper bound $\mathbb{P}(f=\hat{f})$,
to finaly compute is limit to finally compute its limit.
$\mathbb{P}(\boldsymbol{X}=\boldsymbol{Y})=\mathbb{P}\left(X_{1}=Y_{1}, X_{2}=Y_{2}, \ldots, X_{n}=Y_{n}\right)$
$=\mathbb{P}\left(X_{1}=Y_{1}\right) \cdot \mathbf{P}\left(X_{2}=Y_{2}\right) \ldots \cdot \mathbb{P}\left(X_{n}=Y_{n}\right)=\mathbb{P}(g=\widehat{g})^{n}=(1-\epsilon)^{n} \quad$ (2)
Since by hypothesis we know $\mathbf{P}\left(h_{n}(\boldsymbol{Y})=\widehat{h}_{n}(\boldsymbol{Y})\right)=1$, we have that
$\mathbb{P}\left(h_{n}(\boldsymbol{X})=\widehat{h}_{n}(\boldsymbol{Y}) \mid \boldsymbol{X} \neq \boldsymbol{Y}\right)=\mathbb{P}\left(h_{n}(\boldsymbol{X})=\widehat{h}_{n}(\boldsymbol{Y}) \cap h_{n}(\boldsymbol{Y})=\widehat{h}_{n}(\boldsymbol{Y}) \mid \boldsymbol{X} \neq \boldsymbol{Y}\right)$
$=\mathbb{P}\left(h_{n}(\boldsymbol{X})=h_{n}(\boldsymbol{Y})=\widehat{h_{n}}(\boldsymbol{Y}) \mid \boldsymbol{X} \neq \boldsymbol{Y}\right)$
$\leq \mathbb{P}\left(h_{n}(\boldsymbol{X})=h_{n}(\boldsymbol{Y}) \mid \boldsymbol{X} \neq \boldsymbol{Y}\right)$

$$
\begin{align*}
& \leq \mathbb{P}\left(h_{n}(.1\right. \tag{3}\\
& <\beta \alpha^{n}
\end{align*}
$$

We will now estimate $\mathbb{P}\left(f_{n}=f_{n}\right)$ using the law of total probability w.r.t. the event $\boldsymbol{X}=\boldsymbol{Y}$
$\mathbb{P}\left(f_{n}=\widehat{f}_{n}\right)=\mathbb{P}\left(h_{n}(\boldsymbol{X})=\widehat{h}_{n}(\boldsymbol{Y})\right)$
$=\mathbb{P}\left(h_{n}(\boldsymbol{X})=\widehat{h}_{n}(\boldsymbol{Y}) \mid \boldsymbol{X}=\boldsymbol{Y}\right) \cdot \mathbf{P}(\boldsymbol{X}=\boldsymbol{Y})+\mathbb{P}\left(h_{n}(\boldsymbol{X})=\widehat{h}_{n}(\boldsymbol{Y}) \mid \boldsymbol{X} \neq \boldsymbol{Y}\right) \cdot \mathbb{P}(\boldsymbol{X} \neq \boldsymbol{Y})$
$=\mathbf{P}\left(h_{n}(\boldsymbol{X})=\hat{h}_{n}(\boldsymbol{X})\right) \cdot \mathbf{P}(\boldsymbol{X}=\boldsymbol{Y})+\mathbb{P}\left(h_{n}(\boldsymbol{X})=\widehat{h}_{n}(\boldsymbol{Y}) \mid \boldsymbol{X} \neq \boldsymbol{Y}\right) \cdot(1-\mathbb{P}(\boldsymbol{X}=\boldsymbol{Y}))$
$=1 \cdot(1-\epsilon)^{n}+\mathbf{P}\left(h_{n}(\boldsymbol{X})=\widehat{h}_{n}(\boldsymbol{Y}) \mid \boldsymbol{X} \neq \boldsymbol{Y}\right) \cdot\left(1-(1-\epsilon)^{n}\right) \quad$ (using 2 and hypothesis)
$<(1-\epsilon)^{n}+\beta \alpha^{n} \cdot\left(1-(1-\epsilon)^{n}\right) \quad$ (using 3)
To conclude our proof, we will show that $\lim \mathbb{P}\left(f_{n}=\widehat{f}_{n}\right)$ exists and compute its value. Note that since $1-\epsilon \in[0,1)$ and $\alpha \in(0,1)$, trivially $\lim _{n \rightarrow+\infty}^{n \rightarrow+\infty} \beta \alpha^{n}+(1-\epsilon)^{n} \cdot\left(1-\beta \alpha^{n}\right)=0$.
$0 \leq \liminf _{n \rightarrow+\infty} \mathbb{P}\left(f_{n}=\widehat{f}_{n}\right) \leq \limsup _{n \rightarrow+\infty} \mathbb{P}\left(f_{n}=\hat{f}_{n}\right) \leq \limsup _{n \rightarrow+\infty} \beta \alpha^{n}+(1-\epsilon)^{n} \cdot\left(1-\beta \alpha^{n}\right)=0$
Then, $\lim _{n \rightarrow+\infty} \mathbb{P}\left(f_{n}=\hat{f}_{n}\right)=0$ and we conclude $\lim _{n \rightarrow+\infty} \mathbb{P}\left(f_{n} \neq \hat{f}_{n}\right)=0$.
Corollary D.1. Assume that a model \mathcal{M} solves shifted addition perfectly, but it incorrectly solves at leant one m digit by 1 digit multititication for some fixed d. Then the probability that \mathcal{M} w will solve
any m digit by n digit multiplication using the long-form multiplication algorithm tends to 0 .

Proof. We define $s: \mathbb{Z}_{10}^{m+n} \times \mathbb{N} \rightarrow \mathbb{N} \times \mathbb{N}, d: \mathbb{N} \times \mathbb{Z}_{10} \rightarrow \mathbb{N}, h_{n}: \mathbb{N}^{n} \rightarrow \mathbb{N}$, and $f_{n}: \mathbb{Z}_{10}^{m+n} \rightarrow \mathbb{N}$

where $x_{1}^{-} x_{2}^{-} \ldots x_{m}$ denotes concatenating digits x_{i}
$\begin{aligned} d(x, y) & :=x \cdot y \\ g & =d \circ s\end{aligned}$
$h_{n}\left(x_{1}, \ldots, x_{n}\right):=\sum_{i=1}^{n} x_{i} 10^{n-i}$
$\left.f_{n}(\mathbf{x}):=h_{n}(g(\mathbf{x}, 1), g(\mathbf{x}, 2)), \ldots, g(\mathbf{x}, n)\right)$

Note that g defines the base-10 multiplication between m-digit numbers $\left(x_{1} x_{2} \ldots x_{m}\right)$ and 1 -digit numbers $\left(x_{m}+j\right)$, where s denotes the selection of the numbers to multiply and d denotes the actual multipicication. Note that h_{n} describes the shifted addition used at the end of long-form multitilication
to combine $n m$-digit by 1 -digit multiplications. Therefore, f_{n} describes the long-form multiplication to combine $n m$-digit by 1 -digi
of m-digit by n-digit numbers.
By hypothesis, $\mathbb{P}(g \neq \widehat{g})=\epsilon>0$ and $\mathbb{P}\left(h_{n}=\widehat{h}_{n}\right)=1$, where \widehat{g} and \widehat{h}_{n} denote estimators using
model \mathcal{M}. It can be shown that $\mathbb{P}\left(h_{n}(X)=h_{n}(Y) \mid X \neq Y\right)<\beta \alpha^{n}$ for $\alpha=0.1$ and $\beta=10^{m}$. Using Lemma D.1, $\lim _{\rightarrow+\infty} \mathrm{P}\left(f_{n} \neq \hat{f}_{n}\right)=1$, which concludes our proof.

Note that Lemma D.1's proofs gives us empirical bounds once ϵ and α are approximated. Also
note that our definition of g in the proof of Corollary D.1 highlights two possible sources of exponentially-accumulating error: errors in the selection of the numbers to multiply s, and errors exponentially-accumulating error: errors in the
in the actual m-digit by 1 -digit multiplication d.
D. 2 Transformers struggle with problems that require increasingly larger iterative applications of a function (depth)
Proposition D.2. Let $f_{n}(\mathbf{x})=g^{n}(\mathbf{x})$. Assume $\mathbb{P}(g(X)=\widehat{g}(Y) \mid X \neq Y) \leq c$ (i.e. recovering from
a mistake due to the eandonness of applying the estimator on an incorrect input has probability at a mistake due to the randomness of applying the estimator on an incorrect input has
most c). If $\mathbb{P}(g \neq \hat{g})=\epsilon>0$ with $c+\epsilon<1$, then $\operatorname{limin}_{n \rightarrow+\infty} \mathbb{P}\left(f_{n} \neq \hat{f}_{n}\right)=1-\frac{c}{c+\epsilon}$.

Proof. We first derive a recursive upper bound using the law of total probability, and then prove a
non-recursive uper bound by induction. non-recursive upper bound by induction.
$s_{n}:=\mathbb{P}\left(f_{n}=\widehat{f}_{n}\right)=\mathbb{P}\left(g\left(g^{n-1}(Z)\right)=\widehat{g}\left(\widehat{g}^{n-1}(Z)\right)\right)$
$=\mathbf{P}\left(g(\boldsymbol{X})=\widehat{g}(\boldsymbol{Y})\right.$) where $\boldsymbol{X}:=g^{n-1}(Z)$ and $\boldsymbol{Y}:=\widehat{g}^{n-1}(Z)$
$=\mathbb{P}(g(\boldsymbol{X})=\widehat{g}(\boldsymbol{Y}) \mid \boldsymbol{X}=\boldsymbol{Y}) \cdot \mathbf{P}(\boldsymbol{X}=\boldsymbol{Y})+\mathbb{P}(\underline{g}(\boldsymbol{X})=\widehat{\boldsymbol{g}}(\boldsymbol{Y}) \mid \boldsymbol{X} \neq \boldsymbol{Y}) \cdot \mathbb{P}(\boldsymbol{X} \neq \boldsymbol{Y})$
$=\mathrm{P}(g(\boldsymbol{X})=\widehat{g}(\boldsymbol{X})) \cdot \mathbf{P}(\boldsymbol{X}=\boldsymbol{Y})+\mathbb{P}(g(\boldsymbol{X})=\widehat{g}(\boldsymbol{Y}) \mid \boldsymbol{X} \neq \boldsymbol{Y}) \cdot(1-\mathbb{P}(\boldsymbol{X}=\boldsymbol{Y}))$
$=\mathrm{P}(g(\boldsymbol{X})=\widehat{g}(\boldsymbol{X})) \cdot s_{n-1}+\mathbb{P}(g(\boldsymbol{X})=\widehat{g}(\boldsymbol{Y}) \mid \boldsymbol{X} \neq \boldsymbol{Y}) \cdot\left(1-s_{n-1}\right)$
$\leq(1-\epsilon) \cdot s_{n-1}+c \cdot\left(1-s_{n-1}\right.$
$\leq(1-\epsilon-c) \cdot s_{n-1}+c$
We know $s_{1}=(1-\epsilon)$ since $s_{1}=\mathbb{P}\left(f_{1}=\widehat{f_{1}}\right)=\mathbb{P}(g=\widehat{g})$. Let $b:=1-\epsilon-c$ for ease of writing.
Then, we have
Then, we have
It can be easily shown by induction that $s_{n} \leq b^{n-1}(1-\epsilon)+c \sum_{i=0}^{n-2} b^{i}$:

- The base case $n=2$ is true since we know $s_{2} \leq b \cdot s_{1}+c$, and $b \cdot s_{1}+c=b(1-\epsilon)+c=$
- The base case $n=2$ is tue since we know $s_{2} \leq b \cdot s_{1}+c$, and $b \cdot s_{1}+$
$b^{2-1}(1-\epsilon)+c \sum_{i=0}^{2-2} b^{i}$, thus showing $s_{2} \leq b^{2-1}(1-\epsilon)+c \sum_{i=0}^{2-2} b^{i}$
- The inductive step yields directly using Equation 4 ,
$s_{n} \leq b \cdot s_{n-1}+c$
$\leq b \cdot\left(b^{n-2}(1-\epsilon)+c \sum_{i=0}^{n-3} b^{i}\right)+c \leq b^{n-1}(1-\epsilon)+c \sum_{i=1}^{n-2} b^{i}+c \leq b^{n-1}(1-\epsilon)+c \sum_{i=0}^{n-2} b^{i}$
We can rewrite the geometric series $\sum_{i=0}^{n-2} b^{i}$ in its closed form $\frac{1-b^{n-1}}{1-b}$, and recalling $b:=1-\epsilon-c$,
$s_{n} \leq b^{n-1}(1-\epsilon)+c \frac{1-b^{n-1}}{1-b}=b^{n-1}(1-\epsilon)+c \frac{1-b^{n-1}}{c+\epsilon}$
$=b^{n-1}(1-\epsilon)+\frac{c}{c+\epsilon}-b^{n-1} \frac{c}{c+\epsilon}$
$=b^{n-1}\left(1-\epsilon-\frac{c}{c+\epsilon}\right)+\frac{c}{c+\epsilon}$

Shortcut Learning in Deep Neural Networks

Robert Geirhos ${ }^{1,2, *, \S}$, Jörn-Henrik Jacobsen ${ }^{3, *}$, Claudio Michaelis ${ }^{1,2, *}$, Richard Zemel ${ }^{\dagger, 3}$, Wieland Brendel ${ }^{\dagger, 1}$, Matthias Bethge ${ }^{\dagger, 1}$ \& Felix A. Wichmann ${ }^{\dagger, 1}$

Transformers Learn Shortcuts to Automata

By and large, the prior work was based on weaker LLMs, thus some might have wondered with extreme-scale, these problems magically go away

Ruixiang Tang ${ }^{\dagger}$, Dehan Kong ${ }^{\ddagger}$, Longtao Huang ${ }^{\ddagger}$, Hui Xue ${ }^{\ddagger}$

Shortcut Learning of Large Language Models in Natural Language Understanding

Mengnan Du New Jersey Institute of Technology Newark, NJ, USA mengnan.du@njit.edu	Fengxiang He JD Explore Academy Beijing, Beijing, China fengxiang.f.he@gmail.com	Na Zou Texas A\&M University College Station, TX, USA nzou1 @tamu.edu
The Universitv of Svdnev	Xia Hu	
Rice Universitv		

Let's step back...

Transformers are not the right models for multiplication? Instead, Toolformers (Schick et. al. 2003)?

That's exactly the point!
Relatedly, are transformers the right models for other compositional aspects of commonsense / language?

Multiplication (+ puzzles, algorithms) are an "edge case"??? all other compositionality will work well with transformers + RLHF + scratchpad ???

1. How do we know the full mastery?
2. WHY is simple multiplication harder than other (seemingly more complex) compositional tasks?
3. (Since we are at CVPR) what about compositional visual QA?

CREPE: Can Vision-Language Foundation Models Reason Compositionally?

Zixian $\mathrm{Ma}^{\text { }}$, Jerry Hong ${ }^{1 *}$, Mustafa Omer Gul ${ }^{2 *}$, Mona Gandhi ${ }^{3}$, Irena Gao ${ }^{1}$, Ranjay Krishna ${ }^{4}$

Abstract

A fundamental characteristic common to both human vision and natural language is their compositional nature. Yet, despite the performance gains contributed by large vision and language pretraining, we find that-across 7 architectures trained with 4 algorithms on massive datasets-they struggle at compositionality. To arrive at this conclusion, we introduce a new compositionality evaluation benchmark, CREPE, which measures two important aspects of compo-

CREPE: Can Vision-Language Foundation Models Reason Compositionally?

Zixian $\mathrm{Ma}^{1 *}$, Jerry Hong ${ }^{1 *}$, Mustafa Omer Gul ${ }^{2}$, Mona Gandhi ${ }^{3}$, Irena Gao^{1}, Ranjay Krishna ${ }^{4}$

Measuring Compositional Consistency for Video Question Answering

Mona Gandhi ${ }^{1 *}$, Mustafa Omer Gul ${ }^{2 *}$, Eva Prakash ${ }^{2}$, Madeleine Grunde-McLav Ranjay Krishna ${ }^{3}$, Maneesh Agrawala ${ }^{2}$

AGQA: A Benchmark for Compositional Spatio-Temporal Reasoning

2050: An Al Odyssey

Prolog: what CVPR 2050 be like
Chapter 1: The Possible Impossibilities Chapter 2: The Impossible Possibilities Chapter 3: The Paradox

Epilog: why am I even here? A confession of an alien

Círca 2023 ...

How can Indian startups create foundation models for India?

Sam Atman

Rajan Anandan

It's hopeless to compete with OpenAI

Simpossible Distillation

from Low-quality Model to High-Quality Dataset \& Model

winning recipe $=$ extreme-scale pre-training + RLHF at scale

???

How is that even possible when imitating from proprietary LLMs are supposedly hopeless?

The False Promise of Imitating Proprietary LLMs

Arnav Gudibande*
UC Berkeley
arnavg@berkeley.edu
Xinyang Geng
UC Berkeley
young.geng@berkeley.edu

Eric Wallace*
UC Berkeley
ericwallace@berkeley.edu
Hao Liu
UC Berkeley hao.liu@berkeley.edu

Charlie Snell*
UC Berkeley
csnell22@berkeley.edu
Pieter Abbeel
UC Berkeley
pabbeel@berkeley.edu

Sergey Levine
UC Berkeley
svlevine@berkeley.edu

Dawn Song
UC Berkeley
dawnsong@berkeley.edu

Are small LMs completely out of league?

Can small, off-the-shelf LMs learn to abstract without task supervision?

Task-specific Symbolic Knowledge Distillation works!

Symbolic Knowledge Distillation:
 from General Language Models to Commonsense Models

Peter West ${ }^{\dagger \ddagger^{*}}$ Chandra Bhagavatula ${ }^{\ddagger}$ Jack Hessel ${ }^{\ddagger}$ Jena D. Hwang ${ }^{\ddagger}$
Teaching Small Language Models to Reason
Lucie Charlotte Magister*
University of Cambridge
lcm67@cam.ac.uk

Jonathan Mallinson Google Research jonmall@google.com

Jakub Adamek
Google Research
enkait@google.com

Eric Malmi

Google Research emalmi@google.com

Aliqizas Cayamen
${ }^{\text {Gor }}$ Specializing Smaller Language Models towards Multi-Step Reasoning

Bras ${ }^{\ddagger}$ Ximing Lu ${ }^{\dagger \ddagger}$ Sean Welleck ${ }^{\dagger \ddagger}$ Yejin Choi ${ }^{\dagger \ddagger *}$ mputer Science \& Engineering, University of Washington n Institute for Artificial Intelligence

Distilling Step-by-Step! Outperforming Larger Language Models with Less Training Data and Smaller Model Sizes

Cheng-Yu Hsieh ${ }^{1 *}$, Chun-Liang Li ${ }^{2}$, Chih-Kuan Yeh ${ }^{3}$, Hootan Nakhost ${ }^{2}$,
Yasuhisa Fujii ${ }^{3}$, Alexander Ratner ${ }^{1}$, Ranjay Krishna ${ }^{1}$, Chen-Yu Lee ${ }^{2}$, Tomas Pfister ${ }^{2}$
${ }^{1}$ University of Washington, ${ }^{2}$ Google Cloud AI Research, ${ }^{3}$ Google Research
cydhsieh@cs.washington.edu

Our task in focus: learning to "abstract" in language

In NLP: ~ "sentence summarization"

++ New observation: "paraphrasing" can be viewed as a special case of "summarization"

Mission Impossible:

Learn to "summarize" + "paraphrase"

- without extreme-scale pre-training
- without RL with human feedback at scale - without supervised datasets at scale

Al is as good as the data it was trained on
winning recipe $=$ extreme-scale pre-training + RLHF at scale

GPT-3

We will build on ...

Symbolic Knowledge Distillation

From General Language Models to Commonsense Models

175B Parameters General Model

Symbolic Knowledge

 over a human-authored KB in all criteria: scale, accuracy, and diversity.

ATOMIC-10x: a machine-authored KB that wins, for the first time,

"While we will be looking across all parts of the newsroom, at the end of the redundancy program we expect there will be significantly fewer editorial management, video, presentation and section writer roles," the publisher is quoted as saying in an internal note.

T5-ImpDistill

"We are looking to reduce the number of staff in the newsroom", the publisher said in an internal note.

GPT-3 text-davinci-003, zero-shot
The publisher has informed staff through an internal note that, after implementing a redundancy program, there will be a significant reduction in the number of editorial management, video, presentation, and section writer roles.

Stronger than 200x larger GPT-3 in human evaluation!

Dataset has higher diversity than human-authored Gigaword
 (Rush et al. 2015)

Our dataset (3.4M) exhibit more lexical diversity than human-authored Gigaword (4M)!

Dataset has higher diversity than human-authored Gigaword

Our dataset covers diverse summarization strategy!

IVaking
Small Language Models Better
Procedural Knowledge Model

PLASMA. Making Small Language Models Better Action Reasoners

PLASMA. Making Small Language Models Better Action Reasoners

Procedural Knowledge Verbalization

Procedural Knowledge Verbalization

CoPlan Dataset

Procedural Knowledge Verbalization

Procedural Knowledge Verbalization

PROMPT TEMPLATES

CoPlan Dataset

Procedural Knowledge Distillation

Procedural Knowledge Distillation

Verifier-Guided Decoding

Buy a new car

Plan-so-far:

1. Research different car models
2. [next step]

Does [next step] logically
follows [previous steps] to
help achieve the goal?
Based on: Temporality,
Logicality,
Completeness,...

Verifier-Guided Decoding

Buy a new car

Plan-so-far:

1. Research different car models
2. [next step]

Final Plan:

Research different car models
Visit car dealerships
Test drive different models
Make a decision on a car
Buy a new car

PlaSma+

PLASMA helps 1 the scale gap!

Does PLASMA help downstream Embodied tasks?

VirtualHome Environment

Task: Turn of TV

Does
 PLASMA.
 help downstream Embodied tasks?

VirtualHome Environment

Human Performance

PlaSma, 16 times smaller model generates steps that are significantly more EXECUTABLE and COMPLETE!!!

PLASMA, can do counterfactual planning!

Goal

Condition

Smaller models can perform counterfactual planning with same level of proficiency as larger models!	Bad Trivial Good

Erapexedindisedter

2050: An Al Odyssey

Prolog: what CVPR 2050 be like
Chapter 1: The Possible Impossibilities Chapter 2: The Impossible Possibilities Chapter 3: The Paradox

Epilog: why am I even here? A confession of an alien

Everything, everywhere, all at once

Passed the bar exam

Existential risk

Chapter 3: The Paradox

Commonsense paradox
Moravec's paradox Generative Al paradox

Dark matter is

 what matters in modern physics- Only 5% of universe is normal matter. The remaining 95\% is dark matter and dark energy.
- Dark matter is completely invisible, yet affects what are visible: the orbits of stars and the trajectory of light

Dark matter of language?

Normal matter: visible text (words, sentences)

Dark matter: the unspoken rules of how the world works, which influence the way people use and interpret language

Theory of Mind May Have Spontaneously Emerged in Large Language Models
Authors: Michal Kosinski*1
Affiliations:
${ }^{1}$ Stanford University, Stanford, CA94305,
*Correspondence to: michalk@stanford.es

Large Language Models Fail on Trivial Alterations to Theory-of-Mind Tasks

Neural Theory-of-Mind?
 On the Limits of Social Intelligence in Large LMs

Maarten Sap ${ }^{\star} \diamond$ Ronan Le Bras ${ }^{\star}$ Daniel Fried ${ }^{\diamond}$ Yejin Choi ${ }^{\star} \curvearrowright$

*Allen Institute for AI, Seattle, WA, USA
\diamond Language Technologies Institute, Carnegie Mellon University, Pittsburgh, USA
${ }^{\ominus}$ Paul G. Allen School of Computer Science, University of Washington, Seattle, WA, USA maartensap@cmu.edu

Circa 2022... (GPT-3)
 "theory of mind" test

Alice and Bob saw apples on the table in the kitchen.
Alice left the kitchen.
Bob moved the apples to the cabinet.

Circa 2022... (GPT-3) "theory of mind" test

Alice and Bob saw apples on the table in the kitchen.
Alice left the kitchen.
Bob moved the apples to the cabinet.

Where would Bob think that Alice will look for the apples?

Circa 2022... (GPT-3) "theory of mind" test

Alice and Bob saw apples on the table in the kitchen.
Alice left the kitchen.

Bob moved the apples to the cabinet.

Where would Bob think that Alice will look for the apples?

Circa 2023... (GPT-4) "theory of mind" test

Alice and Bob saw apples on the table in the kitchen.
Alice left the kitchen.

Bob moved the apples to the cabinet.

Where would Bob think that Alice will look for the apples?

On the table

Circa 2023... (GPT-4) "theory of mind" test

Alice and Bob saw apples on the table in the kitchen.

Bob moved the apples to the cabinet.

Alice left the kitchen.

Where would Bob think that Alice will look for the apples?

Minding Language Models’ (Lack of) Theory of Mind: A Plug-and-Play Multi-Character Belief Tracker

Melanie Sclar ${ }^{1}$ Sachin Kumar ${ }^{2}$ Peter West ${ }^{1}$ Yejin Choi ${ }^{1,3}$ Yulia Tsvetkov ${ }^{1}$

Alane Suhr ${ }^{3}$

GPT4-68\%
Typical false-belief
ToM story:
1 room
2 people*
2 containers 1 object

GPT4-58\%
Variant I

2 ToM stories concatenated in 2 rooms?

GPT4-62\%
Variant 2
3 people
3 containers, moving 1 object sequentially?
GPT4-97\%

Variant 3
1 room
2 people,
4 containers
moving 1 object sequentially?

Why AI is incredibly smart and shockingly stupid

USER

I left 5 clothes to dry out in the sun. It took them 5 hours to dry completely. How long would it take to dry 30 clothes?

ASSISTANT It would take 30 hours to dry 30 clothes.

If it takes 10 hours to dry 5 clothes, how long would it take 20 clothes to dry in the sun?

- GPT4, as of Jun 182023 -

The drying time for clothes is typically dependent on factors like the type of cloth, the intensity of the sunlight, humidity, wind, and so on. However, if we are assuming that the drying time scales linearly with the number of clothes, and that all other factors remain constant, we can calculate it as follows:

If it takes 10 hours to dry 5 clothes, then it takes 2 hours to dry 1 cloth (10 hours / 5 clothes $=2$ hours/cloth) .

So, it would take 40 hours to dry 20 clothes (20 clothes * 2 hours/cloth $=40$ hours)

RLHF whack-a-mole game?

If it takes 10 hours to dry 5 clothes, how long would it take 20 clothes to dry in the sun?
— GPT4, as of Jun 182023 -

The drying time for clothes is typically dependent on factors like the type of cloth, the intensity of the sunlight, humidity, wind, and so on. However, if we are assuming that the drying time scales linearly with the number of clothes, and that all other factors remain constant, we can calculate it as follows:

If it takes 10 hours to dry 5 clothes, then it takes 2 hours to dry 1 cloth (10 hours / 5 clothes $=2$ hours/cloth).

So, it would take 40 hours to dry 20 clothes (20 clothes * 2 hours/cloth $=40$ hours).

Commonsense Paradox

I'll dare say, the following four statements are all true:

- Commonsense is trivial for humans, hard for machines
- Among humans, "common sense is not so common" - Voltaire
- LLMs do acquire a vast amount of commonsense knowledge
- Yet in some ways, "Al is worse than a dog" - Yann Lecun

Common sense is not so common

Chapter 3: The Paradox

Commonsense paradox Moravec's paradox Generative Al paradox

Moravec's Paradox

- Hans Moravec, Rodney Brooks, Marvin Minsky, ...
- contrary to traditional assumptions, (higher-level) reasoning requires little computation, but sensorimotor and perception skills require enormous computational resources
- it is comparatively easy to make computers exhibit adult level performance on intelligence tests or playing checkers, and difficult or impossible to give them the skills of a one-year-old when it comes to perception and mobility

Might it be that NLP is easier than Vision or Robotics?

AGI without strong vision or robotics capabilities?

Segment Anything

Alexander Kirillov ${ }^{1,2,4}$ Eric Mintun ${ }^{2}$ Nikhila Ravi ${ }^{1,2}$ Hanzi Mao ${ }^{2} \quad$ Chloe Rolland $^{3} \quad$ Laura Gustafson 3 Tete Xiao ${ }^{3}$ Spencer Whitehead Alexander C. Berg Wan-Yen Lo Piotr Dollár ${ }^{4}$ Ross Girshick ${ }^{4}$
${ }^{1}$ project lead $\quad{ }^{2}$ joint first author $\quad{ }^{3}$ equal contribution $\quad{ }^{4}$ directional lead Meta AI Research, -4IR
couldn't be possible without their 1B mask dataset innovation

DataComp:

In search of the next generation of multimodal datasets

```
yamir Yitzhak Gadre*2 Gabriel Ilharco*1 Alex Fang*1 Jonathan Hayase }\mp@subsup{}{}{1}\mathrm{ Georgios Smyrnis }\mp@subsup{}{}{5
    Thao Nguyen }\mp@subsup{}{}{1}\mathrm{ Ryan Marten }\mp@subsup{}{}{7,9}\mathrm{ Mitchell Wortsman }\mp@subsup{}{}{1}\mathrm{ Dhruba Ghosh }\mp@subsup{}{}{1}\mathrm{ Jieyu Zhang }\mp@subsup{}{}{1
        Eyal Orgad }\mp@subsup{}{}{3}\quad\mathrm{ Rahim Entezari }\mp@subsup{}{}{10}\quad\mathrm{ Giannis Daras }\mp@subsup{}{}{5}\quad\mathrm{ Sarah Pratt }\mp@subsup{}{}{1}\mathrm{ Vivek Ramanujan }\mp@subsup{}{}{1
            Yonatan Bitton }\mp@subsup{}{}{11}\mathrm{ Kalyani Marathe }\mp@subsup{}{}{1}\mathrm{ Stephen Mussmann }\mp@subsup{}{}{1}\quad\mathrm{ Richard Vencu }\mp@subsup{}{}{6
    Mehdi Cherti }\mp@subsup{}{}{6,8}\mathrm{ Ranjay Krishna }\mp@subsup{}{}{1}\mathrm{ Pang Wei Koh }\mp@subsup{}{}{1}\mathrm{ Olga Saukh }\mp@subsup{}{}{10}\mathrm{ Alexander Ratner }\mp@subsup{}{}{1
                Shuran Song}\mp@subsup{}{}{2}\mathrm{ Hannaneh Hajishirzi}\mp@subsup{}{}{1,7}\mathrm{ Ali Farhadi }\mp@subsup{}{}{1}\mathrm{ Romain Beaumont }\mp@subsup{}{}{6
                    Sewoong Oh }\mp@subsup{}{}{1}\mathrm{ Alexandros G. Dimakis }\mp@subsup{}{}{5}\mathrm{ Jenia Jitsev }\mp@subsup{}{}{6,8
            Yair Carmon }\mp@subsup{}{}{3}\mathrm{ Vaishaal Shankar }\mp@subsup{}{}{4}\mathrm{ Ludwig Schmidt }\mp@subsup{}{}{1,6,7
```


Compared to LLMs, we don't yet have discovered equally powerful pretraining data \& learning objective for vision or robotics

Multimodal C4: An Open, Billion-scale Corpus of Images

Interleaved with Text

Wanrong Zhu** Jack Hessel ${ }^{\text {®* }}$
Anas Awadalla ${ }^{\circledR}$ Samir Yitzhak Gadre ${ }^{\diamond}$ Jesse Dodge ${ }^{\curvearrowright}$ Alex Fang ${ }^{\wedge}$

LAION-5B: An open large-scale dataset for training next generation image-text models

Christoph Schuhmann ${ }^{1} \S \S^{\circ \circ}$ Romain Beaumont ${ }^{1} \S \S^{\circ \circ}$ Richard Ven Cade Gordon ${ }^{2} \S \S^{\circ \circ}$ Ross Wightman ${ }^{1} \S \S$ Mehdi Cherti ${ }^{1,10}$ Theo Coombes ${ }^{1}$ Aarush Katta ${ }^{1}$ Clayton Mullis ${ }^{1}$ Mitchell Wo. Patrick Schramowski ${ }^{1,4,5}$ Srivatsa Kundurthy ${ }^{1}$ Katherine Crowso

Chapter 3: The Paradox

Commonsense paradox Moravec's paradox Generative Al paradox

Generative AI Paradox?

- Another case of easy is hard and hard is easy
- It appears to be that for (current) Al, generation is easier than understanding
- For humans, understanding is generally easier than generation

\# Vera: A General-Purpose Plausibility Estimation Model for Commonsense Statements

Jiacheng Liu ${ }^{\ominus *}$ Wenya Wang ${ }^{\circledR *}$ Dianzhuo Wang \diamond

Plausibility: 15\%
个

A bird has four legs.

Atomic2020 [Hwang et al., 2021]

GenericsKB [Bhakthavatsalam et al., 2020]

1. Example generics about "tree" in GenericskB

Trees are perennial plants that have long woody trunks.
Trees are woody plants which continue growing until they die.
Most trees add one new ring for each year of growth.
Trees produce oxygen by absorbing carbon dioxide from the air.
Trees are large, generally single-stemmed, woody plants. Trees live in cavities or hollows.
Trees grow using photosynthesis, absorbing carbon dioxide and releasino nyvoen anomiost

2 Knowledge Bases 19 QA datasets ~7M statements

Original exampl

What would some
(A) ungulate (B) bomber (C) body armor (D) tank (E) hat

Answer:
(C)

Converted statement group:

Someone would wear an ungulate to protect themselves from a cannon. Someone would wear a bomber to protect themselves from a cannon. Someone would wear body armor to protect themselves from a cannon. Someone would wear a tank to protect themselves from a cannon. Someone would wear a hat to protect themselves from a cannon.
(Incorrect) (Incorrect) (Correct) (Incorrect) (Incorrect)
atasets

Solving Commonsense Benchmarks

Predicting the most plausible statement out of the multiple-choice candidates

Name	Domain	Format
Stage B TRAINING (SEEN)		
OpenBookQA	scientific	multiple-choice (4)
ARC (easy)	scientific	multiple-choice (4)

Converted statement group:

Someone would wear an ungulate to protect themselves from a cannon. (Incorrect)
Someone would wear a bomber to protect themselves from a cannon. (Incorrect)

Best baseline is Flan-T5. ChatGPT and GPT-4 are worse.
Vera outperforms Flan-T5 by 4\%-6\% on all eval sets (seen/unseen domains)

WSC	5 unseen (type 1) benchmarks
COPA	Similar to seen benchmarks, but
NumerSense	diagnostic datasets
PROST	
Spatial Commonsense	din

Evaluation (UNSEEN TYPE 2)

```
SWAG
CODAH
Story Cloze Test
\alphaNLI
StrategyQA
CREAK
```


8 unseen (type 2) benchmarks
The tasks are a bit further from
commonsense verification

2050: An Al Odyssey

Prolog: what CVPR 2050 be like
Chapter 1: The Possible Impossibilities Chapter 2: The Impossible Possibilities Chapter 3: The Paradox

Epilog: why am I even here? A confession of an alien

Epilog: why am I even here? a confession of an alien

- Impossible possibilities - story of my life
- 10 years ago, it really didn't seem like I'd come this far
- I consider myself as a case of a late bloomer*
- I grew to believe that talent is made, not born**
* Though even to this date, I feel like I am an imposter, just about to get caught (perhaps after this talk)
** Or to state more carefully, talent can be enhanced dramatically throughout one's life, with considerable efforts in a supportive and inclusive environment, even if one's starting point wan't all that remarkable. Of course some folks are born geniuses and all...

Círea 2012

Epilog: why am I even here? a confession of an

"talent is made, not born"

- Internal factor: because I didn't think much of myself, I was (more) willing to do:

1. Lifelong learning: learning from everyone, especially from my students, colleagues, and continually questioning my previous beliefs and perspectives and revising them along the way
2. Taking risks (reason being, since I'm not that great, I shouldn't work on problems that other smarter people will work on. What a waste of tax money, which supports my university salary. Also, since I'm not that great, who cares if I fail... nobody will notice?)
—> And it turns out, 10 year is a long time (to learn about a lot of stuff), and it's actually pretty impossible to only fail - eventually some things will work out

- External factor: I was lucky enough to be in an *inclusive* environment

Epilog: why am I even here? a confession of an alien

- As I grew to believe that talent is made, not born, ...
- I also grew to believe that the power of diversity and inclusion is real
- The culture that understands DEI is less authoritative and more openminded, which in turn helped me to grow confidence to try something new and different
- You just learn so much more when interacting with diverse folks, as they broaden your view points and foster more divergent and innovative thinking
- Giving an opportunity to them can make all the difference!

