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This Tutorial: The Outline

Session 1: Understanding Low-D Representations in Deep Networks
® | ecture 1-1: Introduction to Basic Low-D Models

e Lecture 1-2: Understanding Low-D Representation via Neural
Collapse
® Lecture 1-3: Invariant Low-D Subspaces of Learning Dynamics

Session 2: Designing Deep Networks for Pursuing Low-D Structures
® | ecture 2-1: Representation Learning via the Principle of Compression
® |Lecture 2-2: White-Box Architecture Design via Unrolled
Optimization
® |ecture 2-3: White-Box Transformers via Sparse Rate Reduction



N
Classical Low-dimension Model: GPCA

® Generalized PCA for mixture of subspaces [Vidal, Ma, Sastry 2005]
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Classical Low-dimension Model: GPCA

Understand and interacte with the physical world = nonlinear data
Coping with nonlinearity demands (deeper) representation

Zhihui Zhu (Ohio State University)

Low-D Representation vis NC




Historical Context: Quest for Image Representation |

w - =) class deeper

® Suitable representation is important to the performance

® (lassical design requires domain knowledge
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Historical Context: Quest for Image Representation Il
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[adopted from K. He]

Deep learning builds multiple level of abstractions
® | earn representation from data by back-propagation
® Reduce domain knowledge and feature engineering

® Progressively “linearize” the nonlinear structure
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The objective of learning:
Transform nonlinear and complex data to a
linear, compact and structured representation.

Neural collapse

(4N
(& representation (b
\i}./ti‘ p (by

standard CE training)

Diverse & discriminative
representation (by MCR?
training in section 2)

Empirically observe across many architectures and dataset

Theoretically justify for simple models
Lead to principled ways for designing architectures to pursue Low-D
structures
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Outline

@ Neural Collapse (NC) Phenomena



Neural Collapse (NC) Phenomena

Multi-Class Image Classification Problem

® Goal: Learn a deep network predictor from a labelled training dataset
{(mk,zuyk})7 1= 17 ,’fl,k = 17 ,K}

YIf not, we can use data augmentation to make them balanced
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Neural Collapse (NC) Phenomena

Multi-Class Image Classification Problem

® Goal: Learn a deep network predictor from a labelled training dataset
{(®ri,ye}); i=1,--- ,nk=1,--- K}
® Training Labels: k=1,..., K
® K =10 classes (MNIST, CIFAR10, etc)
® K = 1000 classes (ImageNet)
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YIf not, we can use data augmentation to make them balanced
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Neural Collapse (NC) Phenomena

Multi-Class Image Classification Problem

® Goal: Learn a deep network predictor from a labelled training dataset
{(mk,zuyk})7 1= 17 7n)k = 17 )K}
® Training Labels: k=1,..., K

® K =10 classes (MNIST, CIFAR10, etc)
® K = 1000 classes (ImageNet)
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Data in the input space One-hot labeling vectors in RE

® For simplicity, we assume balanced dataset where each class has n
training samples.!

YIf not, we can use data augmentation to make them balanced
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Neural Collapse (NC) Phenomena

Deep Neural Network Classifiers

® A vanilla deep network:

fe(x) = Wi, o(Wp_y---o(Wix+b1)+br_1)+br

linear classifer W feature q‘;e(:c)::h
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Neural Collapse (NC) Phenomena

Deep Neural Network Classifiers

® A vanilla deep network:

fe(x) = Wi, o(Wp_y---o(Wix+b1)+br_1)+br

linear classifer W feature q‘;e(:c)::h

® Progressive linear separation through nonlinear layers [Naitzat et
al. 2020]

¢ 9 o
Pg A2y 510 0

from two classes; not a
single input!
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Neural Collapse (NC) Phenomena

Deep Neural Network Classifiers

Input Feature/representation Output
s (Our focus) §
U5 .
. és.

£

. feature mapping ¢g/ ()
X £ '\ ) >

li lassifi
inear classifier .. b
{W,b}
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e
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® Training a deep neural network:

K n
1 )
o Z Zl ECE(W¢e(iBrk,z) +b,yi) +A (6, W, b)][7:
k=1i= cross-entropy (CE) loss

weight decay
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Neural Collapse (NC) Phenomena

Deep Neural Network Classifiers

Input Feature/representation Output
i (Our focus) §
- %<
n‘@\ 3
{ €T '\ feature mapping ¢9'Em): linear classifier Wh b
- 8y {w, b}
0.6 - = —g(Cat) -
o . - Sofmir Cat 1| CE(Cat): g(Cat) - log p(Cat)
utput: f(x;0) = ———210.3| Dog |0 = 1.1020.6
function g
-1 0.1] Panda |0 — 051
Prediction Target
(probability)
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Neural Collapse (NC) Phenomena

Neural Collapse in Multi-Class Classification

Prevalence of neural collapse during the terminal P
phase of deep learning training @

Vardan Papyan, (2 X. Y. Han, and David L. Donoho ® :
+ See all authors and affiliations

PNAS October 6, 2020 117 (40) 24652-24663; first published September 21, 2020;
https://doi.org/10.1073/pnas. 2015509117

Contributed by David L. Donoho, August 18, 2020 (sent for review July 22, 2020; reviewed by Helmut Boelsckei and
Stéphane Mallat)

® Reveals common outcome of learned features and classifiers across a
variety of architectures and dataset

® Precise mathematical structure within the features and classifier
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Neural Collapse (NC) Phenomena

Neural Collapse in Multi-Class Classification

class 1 simplex ETF vertex

class 1 classifier

class 3 simplex ETF vertex ¢ l class 2 feature

Credit: Han et al. Neural Collapse Under MSE Loss: Proximity to and
Dynamics on the Central Path. ICLR, 2022.
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Neural Collapse (NC) Phenomena

Neural Collapse: Symmetry and Structures

e NC1: Within-Class Variability Collapse: features of each class
collapse to class-mean with zero variability:

k-th class, i-th sample : hy; — hy,
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Neural Collapse (NC) Phenomena
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k-th class, i-th sample : hy; — hy,
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Neural Collapse (NC) Phenomena

Neural Collapse: Symmetry and Structures

® NC2: Convergence to Simplex Equiangular Tight Frame (ETF):
the class means are linearly separable, and maximally distant

<Ekvﬁk’> N 17 k=F
[l | —, kAK
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Neural Collapse (NC) Phenomena

Neural Collapse: Symmetry and Structures

® NC2: Convergence to Simplex Equiangular Tight Frame (ETF):
the class means are linearly separable, and maximally distant
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Neural Collapse (NC) Phenomena

Neural Collapse: Symmetry and Structures

® For any K unit-length vectors u1, ..., ux in R? (with d > K — 1),
then maxy_sp (up, up) > —ﬁ and the minimum is achieved when
they form a simplex ETF [Rankin'55].

® The simplest case of the Optimal Packings on Spheres, or the
Tammes problem.

® Proof:
K
0<| ;wcHg <K+ K(K - 1)%;2;((1116,11,@
— max(ug, ug) > L
k#k! K-—-1
achieves equality when Zszl w, =0 and (uy, up) = — 5, Vk # K
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Neural Collapse (NC) Phenomena

Neural Collapse: Symmetry and Structures

® NC3: Convergence to Self-Duality: the last-layer classifiers are
perfectly matched with the class-means of features

wy, hy

— 7 9
lwill (|l

where wy, represents the k-th classifier

(i.e., k-th row of W).
w1 \w;\‘
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Neural Collapse (NC) Phenomena

Understanding the Prevalence of Neural Collapse

Question. Given the prevalence of Neural Collapse across datasets
and network architectures, why would such a phenomenon happen
in training overparameterized networks?

Zhihui Zhu (Ohio State University) Low-D Representation vis NC June 18, 2024
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Outline

@® Understanding NC from Optimization



Dealing with a Highly Nonconvex Problem

The training problem is highly nonconvex [Li et al.'18]:
K
min —— ZZ£CE W g (@) + b, yr) + All(0', W, b)|| %,

owWb K
nk 11:=1

due to the fact that the network

f@(a:) = Wi, U(WL_l ---U(Wlm—i-bl) +bL_1)+bL

linear classifer W feature ge(m):;h

® Nonlinear interaction across layers.

e Nonlinear activation functions.
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Understanding NC from Optimization

Simplification: Unconstrained Feature Model

Input Feature/representation Output

) (Our focus) §

Baged s
PNy i
i . feature mapping ¢er ()

linear classifier
{W,b}

Wh+b

Assumption. We treat H = [h1; -+ hgp] as a free optimiza-
tion variable, ignoring the constraint h = ¢g ().
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The Trend of Large Models...
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L g
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# Parameters (M)

Figure: Accuracy vs. model size for image classification on ImageNet dataset

~23 million >  ~1million

(# Parameters in ResNet-50) (# Samples in ImageNet)

In principle, deep network can fit any training labels!
(i.e., not only clean, but also corrupted labels)
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Understanding NC from Optimization

Simplification: Unconstrained Feature Model

i linear classifier
h mear Cassel Wh+ b
{W, b}
Assumption. We treat H = [h1; -+ hgp| as a free optimiza-

tion variable, ignoring the constraint hog(x).
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Understanding NC from Optimization

Simplification: Unconstrained Feature Model

H
;L linear classifier Whb
{W, b}
Assumption. We treat H = [h1; -+ hgp| as a free optimiza-

tion variable, ignoring the constraint hog(x).

® Validity: modern network are highly overparameterized, that they are
universal approximators [Shaham'18];
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Understanding NC from Optimization

Simplification: Unconstrained Feature Model

;L linear classifier Wh+b
{W, b}
Assumption. We treat H = [h1; -+ hgp| as a free optimiza-

tion variable, ignoring the constraint hog(x).

® Validity: modern network are highly overparameterized, that they are
universal approximators [Shaham'18];

¢ State-of-the-Art: also called Layer-Peeled Model [Fang'21],
existing work [E'20, Lu'20, Mixon'20, Fang'21] only studied global
optimality conditions;
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Experiments: NC Occurs on Random Labels/Inputs

CIFAR-10 with random labels, MLP with varying network widths

width = 8 - —o— width =8 —e— width = 8
I width = 16 10 o~ width = 16 o~ width=16 -
E width = 32 i\ 08 Oupens T width = 32 —#— width = 32
a width = 64 . WIS s~ width = 64 —+— width = 64
g\ width = 128 § 0.6\. - —%— width = 128 —%— width = 128
= width = 256 —4— width =256 —4— width = 256
o width =512 - 04 M\»...__,,_. > width =512 | > width = 512
Z width = 1024 - 02 —A— width = 1024 —A— width = 1024 7
width = 2048 - width = 2048 - width = 2048
- 2 R ——————
0 160 200 300 400 500 °% 100 200 300 400 500 % 100 200 300 400 500
Epoch Epoch Epoch
Within-Class Variability (NC1) Self-Duality Collapse (NC2) Training Error
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Understanding NC from Optimization

Experiments: NC Occurs on Random Labels/Inputs

CIFAR-10 with

NC; (log scale)

0 100

Within-Class Variability (NC1)

width = 8
width = 16
width = 32
width = 64
width = 128
width = 256
width = 512 -
width = 1024
width = 2048
200 300 400 500
Epoch

Fidttets

random labels, MLP with varying network widths

12

0.2

0.0

A

@ i u@ra@-8
S 4 width = 256
04 width = 512 |

—&— width =8
width = 16
—#- width = 32
| —+— width = 64
~#— width = 128

—A— width = 1024
width = 2048 -

0

100

200 300 400 500

Epoch

Self-Duality Collapse (NC2)

FEEate

width = 8
width =16 -
width = 32
width = 64
width = 128
width = 256
width = 512

4— width = 1024 ~
width = 2048

P G el
200 300 400 500

Epoch

Training Error

® Validity of unconstrained features model: Learn NC last-layer
features and classifiers for any inputs

® The network memorizes training data in a very special way: NC

® We observe similar results on random inputs (random pixels)

Zhihui Zhu (Ohio State University)
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Geometric Analysis of Global Landscape

K n

N on LSS Lon(Whis + by + —nwnp + —||H||F + —||b||2
k=1 1i1=1

Theorem (Global Optimality & Benign Global Landscape, Zhu et al.'21)

Let feature dimension d is larger than the class number K, i.e., d > K.
Consider the above nonconvex optimization problem w.r.t. (W, H). Then

¢ Global optimality: Any global solution ({H*, W*,b*}) obeys
Neural Collapse, with b* = 0 and

O~ LY _{1, k=K w. _ Ry
g ) ST s = —
i P i\~ kAR Twed gl
*’_/

NC2 NC3
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Understanding NC from Optimization

Geometric Analysis of Global Landscape

[Lu et al.’20] study the following one-example-per class model

gllm— ZECE (e, yr), stl[hgllz =1
k:

[E et al.’20, Fang et al.’21, Gral et al.”21, etc.] study constrained formulation

K

ZZECE (Whii,yr), st [Wlep <1, [hellz <1

{hki}WKnk 14=1

These work show that any global solution has NC, but
® What about local minima/saddle points?

® The constrained formulations are not aligned with practice
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Understanding NC from Optimization

Global Optimitality Does Not Imply Efficient Optimization
“bad” local minima

“flat” saddle point

v
loca.l mmlma

global mlmma

Our loss is still highly nonconvex

1 K

WHbKn

v
“flat” saddle

ZZLCE (Why; +b,yp) + —||W||F+
=11:=1

Zhihui Zhu (Ohio State University)

A
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Geometric Analysis of Global Landscape

Theorem (Global Optimality & Benign Global Landscape, Zhu et al.’21)

Let feature dimension d is larger than the class number K, i.e., d > K.
Consider the above nonconvex optimization problem w.r.t. (W H). Then
¢ Global optimality: Any global solution ({H*, W* b*}) obeys
Neural Collapse.
* Benign global landscape: The objective function (i) has no

spurious local minima, and (ii) any non-global critical point is a strict
saddle with negative curvature.

strict saddle

_#m(has no NC)

| .
all local minima obey NC  negative curvature

7 v v
global minima “flat” saddle

General nonconvex problems Our training problem
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Understanding NC from Optimization

Geometric Analysis of Global Landscape

Theorem (Global Optimality & Benign Global Landscape, Zhu et al.'21)

Let feature dimension d is larger than the class number K, i.e., d > K.
Consider the above nonconvex optimization problem w.r.t. (W, H). Then
¢ Global optimality: Any global solution ({H*, W*,b*}) obeys
Neural Collapse.
* Benign global landscape: The objective function (i) has no
spurious local minima, and (ii) any non-global critical point is a strict
saddle with negative curvature.

Message. lterative algorithms such as (stochastic) gradient
descent will always learn Neural Collapse features and classifiers.

Zhihui Zhu (Ohio State University) Low-D Representation vis NC June 18, 2024 29 /65



Understanding NC from Optimization

Implications of Our Results

strict saddle

Ahas no NC)

I ’
all local minima obey NC ~ Nnegative curvature

v v V
global minima “flat” saddle
General nonconvex problems Our training problem

® A feature learing perspective.

® Top down: unconstrained feature model, representation learning, but
no input information.
® Bottom up: shallow network, strong assumptions, far from practice.
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Understanding NC from Optimization

Implications of Our Results

strict saddle

_has no NC)

d ! v all local minima obey NC ~ Nnegative curvature
global minima “flat” saddle
General nonconvex problems Our training problem

® A feature learing perspective.

® Top down: unconstrained feature model, representation learning, but
no input information.
® Bottom up: shallow network, strong assumptions, far from practice.

e Connections to empirical phenomena.
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Understanding NC from Optimization

Implications of Our Results

K n
{hkm}u‘lj” ZZ cE(Why i +b,y) + Al ({hei b, W,B) 7 (1)
i k: i=1

® Closely relates to low-rank matrix factorization problems [Burer et
al’03, Bhojanapalli et al'16, Ge et al'l6, Zhu et al'18,Li et al'19, Chi
et al'19]

® However, we have more structured observation

1 --- 1
Y = 1 -1 =Ix®1,)
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Understanding NC from Optimization

Experiments on Practical Neural Networks
Conduct experiments with practical networks to verify our findings:

Use a Residual Neural Network

(ResNet) on CIFAR-10 Dataset:

o K =10 classes
® 50K training images
® 10K testing images

—

3x3 conv, 64

Input
3x3 conv, 64
3x3 conv, 64

Zhihui Zhu (Ohio State University)
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3x3 conv, 128

Low-D Representation vis NC

ariane L RS ~ EIEIMZE -
auwomonie 21 551 750 Y 5 il e B o
oo i W B
cat EEaDsaErEs P
wor [ I O I R
w  FAESHAsBNOR
e  EHEREEDENE
rose R 53 ¥ D B R TS T
s R il e PRI
wee T A IR = SR SR R

3x3 conv, 512, 2

June 18, 2024

32/65



Experiments: NC is Algorithm Independent

ResNet18 on CIFAR-10 with different training algorithms

6 0.8 1.0
—%— SGD —%— SGD —%— SGD
—e— Adam 0.6 —e— Adam 0.8 —e— Adam
2 —#— LBFGS ! —=— LBFGS —=— LBFGS
= N «0.6
2 goe H
2 0.4
0.2
§ 0.2
0 0.0 0.0
50 100 150 200 0 50 100 150 200 o 50 100 150 200
Epoch Epoch Epoch

Within-Class Variability (NC1) Between-Class Separation (NC2) Self-Duality Collapse (NC3)

® The smaller the quantities, the severer NC

® NC is prevalent across different training algorithms
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Related Works on NC

A non-comprehensive overview of related work on the analysis and
application of NC

* Theoretical analysis of NC * Applications for understanding &
- Unconstrained features model improving network performance
- Deep unconstrained features model -~ Efficient training

[Tirer & Bruna’22, Sukenik et al.’24] - Transfer learning [Galanti et al.’22, Li et

- Loss design al22]

® CE loss - Imbalanced learning [Fang et al21]

= MSE loss [Han et al’22, Zhou et al’22]  — Continual learning [Yang et al.’23]

= Supervised contrastive [Graf et al’21] - Differential privacy [Wang et al’24]
- Multi-label learning [Li et al’24] - Robustness [Su et al’23]
- Large number of classes [Liuetal'23] - Generalization [Hui et al’22]
- Progressive NC [Wang et al’23] - Feature learning in intermediate layers
- etc. [He & Su’23, Rangamani et al /23]

- etc.
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Exploit NC for Improving Training & Memory

NC is prevalent, and classifier always converges to a Simplex ETF

¢ Implication 1: No need to learn the
classifier [Hoffer et al. 2018]

- Just fix it as a Simplex ETF
- Save 8%, 12%, and 53% parameters for
ResNet50, DenseNet169, and ShuffleNet!
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Exploit NC for Improving Training & Memory

NC is prevalent, and classifier always converges to a Simplex ETF

¢ Implication 1: No need to learn the
classifier [Hoffer et al. 2018] s
- Just fix it as a Simplex ETF ws

- Save 8%, 12%, and 53% parameters for
ResNet50, DenseNet169, and ShuffleNet!

® Implication 2: No need of large feature w1 }2‘\.7
dimension d ha
- Just use feature dim. d = #class K (e.g., P

d = 10 for CIFAR-10)
- Further saves 21% and 4.5% parameters for
ResNet18 and ResNet50!
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Understanding NC from Optimization

Exploit NC for Improving Training & Memory
ResNet50 on CIFAR-10 with different settings

¢ Learned classifier (default) vs. fixed classifier as a simplex ETF
® Feature dim d = 2048 (default) vs. d = 10
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Understanding NC from Optimization

Exploit NC for Improving Training & Memory

ResNet50 on CIFAR-10 with different settings
¢ Learned classifier (default) vs. fixed classifier as a simplex ETF
® Feature dim d = 2048 (default) vs. d = 10

12 100 100
[ ¥~ learned classifier, d=2048 > 20
10| —e— fixed classifier, d=2048 g z
0.gll —= learned classifier, d=10 R o 8
: —w— fixed classifier, d=10 S 2 70f
o
g o, 60 T 60
< #— learned classifier, d=2048 25 learned classifier, d=2048
c 20 —e— fixed classifier, d=2048 a 40 —e— fixed classifier, d=2048
© —=— |earned classifier, d=10 [} —=— |earned classifier, d=10
= —»— fixed classifier, d=10 = 30 —u»— fixed classifier, d=10
0.0 50 100 150 2 20 s0 100 150 200 2% 50 100 150 200
Epoch Epoch Epoch
Self-Duality Collapse (NC3) Training Accuracy Testing Accuracy
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Understanding NC from Optimization

Exploit NC for Improving Training & Memory
ResNet50 on CIFAR-10 with different settings

¢ Learned classifier (default) vs. fixed classifier as a simplex ETF
® Feature dim d = 2048 (default) vs. d = 10

1.2 100 100
[ learned classifier, d=2048 - %
10| —e— fixed classifier, d=2048 b 0
0sll ™= learned classifier, d=10 5 80 o 80
|\ —#— fixed classifier, d=10 S 3 70
o
4 g 60 ® 60
c learned classifier, d=2048 g‘ 50 learned classifier, d=2048
c 20 —e— fixed classifier, d=2048 a 2 —e— fixed classifier, d=2048
© —#— |earned classifier, d=10 [} 0 —#— learned classifier, d=10
= —»— fixed classifier, d=10 = 30 —u»— fixed classifier, d=10
0.0 so 100 150 200 29 so 100 150 200 2% 50 100 150 200
Epoch Epoch Epoch
Self-Duality Collapse (NC3) Training Accuracy Testing Accuracy

® Training with small dimensional features and fixed classifiers achieves
on-par performance with large dimensional features and learned
classifiers.
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Understanding NC from Optimization

Exploit NC for Improving Training & Memory

¢ Class-mean features (CMF) classifier: by NC3 (self-duality), we can
also fix the classifier as the class-mean features during training?

80

fary
[=2] 2] o
o o o
()}
o

B
o

Training Accuracy
Test Accuracy

N

o

20 —— Learnable classifier 20 —
CMF —— Learnable classifier
0 —— CMF
0 50 100 150 200 0
Epochs 0 50 100 150 200

Epochs

® Achieves on-par performance with learned classifiers (ResNet18 on
CIFAR100)

2Jiang, Zhou, et al., Generalized Neural Collapse for a Large Number of Classes, ICML'2024
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Understanding NC from Optimization

Exploit NC for Improving Training & Memory

® CMF classifier improves Out-of-distribution (OOD) performance for

fine-tuning?
* ResNet50 \ /
. Resnet50 /
pretrained on \ /
MoCo I
. ine- i Linear
Fine-tune it Cinssificr
for CIFAR10
Randomly  Backprop
Initialized
Weight

\

\

Resnet50

\ /
/

\ /

Linear
Classifier

Set as class-
mean features

/
/
/

=

Backprop

Test on CIFAR10 (ID) 97.00% 98.00%
Test on STL10 (OOD)

e CMF is simpler to the two-stage approach3

3Kumar, Ananya, et al., Fine-Tuning can Distort Pretrained Features and Underperform Out-of-Distribution, ICLR=2022.
June 18, 2024 38/65
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Prevalence of NC under Different Training Scenarios

Is Cross-entropy Loss Essential?

Question. Is cross-entropy loss essential to neural collapse?

] f . : I One-hot
i 55 e eature mapping £ inear label
,,\/ Ll \;\ ¢ N u 1 i
xTr o (x) 4_(/—;" classifier Whab — )
| 1 . N o
- o o

“He et al., Bag of tricks for image classification with convolutional neural networks,
CVPR'19.
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Prevalence of NC under Different Training Scenarios

Is Cross-entropy Loss Essential?

Question. Is cross-entropy loss essential to neural collapse?

. i One-hot
feature mapping £ linear label
, P (T 0 lassifi
( ) h classiner Wh b — [ J
| | - o
//' o

® \We can measure the mismatch between the network output and the
one-hot label in many ways.

® Various losses and tricks (e.g., label smoothing, focal loss) have been
proposed to improve network training and performance*

“He et al., Bag of tricks for image classification with convolutional neural networks,
CVPR’19.
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Prevalence of NC under Different Training Scenarios

Example I: Focal Loss (FL)

Focal loss puts more focus on hard, misclassified examples®

5
CE(p:) = — log(p,) = g 5
— 0.
4 FL(p) = —(1 — p)” log(p:) =1
\\\ —=2
S\F: v=5
[} \
(%2}
o
2 L
well-classified
examples
1 -Iarge. \ A ~
gradient:,
0 S = S
0 0.2 0.4 0.6 0.8 small 1

probability of ground truth class gradient

5Lin et al., Focal Loss for Dense Object Detection, CVPR’18.
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Example II: Label Smoothing (LS)

Label smoothing replaces the hard label by a soft label®

., i
y % = feature mapping : linear Solft label
“x N . classifier o
- h Wh+b | o)
\ a2
|
y CE:a=0

Softm: 0.6| Cat 1 -«
Output: Wh+b = 0 200X 10.3| Dog | /2

Cat) - log p(Cat)

—q(
: Dog) - log p(Do
_ 1 | function” | 5 4 Panda| /2 — q(Dog) - log p(Dog)
— ¢(Panda) - log p(Panda)
Prediction ~ Target — (1 —a)log(0.6)
- %log(O.S)
- %log([).l)

6Szegedy et al., Rethinking the inception architecture for computer vision, CVPR'16.
Muller, Kornblith, Hinton, When does label smoothing help?, NeurlPS'19.
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Example IlI: Mean-squared Error (MSE) Loss

) . i One-hot
— % i feature mapping i linear label
£ s T \ o' () ' classifier °
\ h Wh+b —
°
r i~ W .
1 Cat 1
Output: Wh+b= | 0 | Dog |0 MSE: = (1 = 1)24(0—0)2+ (-1 -10)2
—1| Panda |0
Prediction Target

Compared with CE, rescaled MSE loss produces on par results for
computer vision & NLP tasks.”

"Hui & Belkin, Evaluation of neural architectures trained with square loss vs cross-entropy in
classification tasks, ICLR 2021.
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Which Loss is the Best to Use?

Testing accuracy (%) for WideResNet18 on mini-ImageNet with
different widths and training iterations

I N T N

Width = X 0.25 71.95 70.20 70.40 69.15
Epoches = 200
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Which Loss is the Best to Use?

Testing accuracy (%) for WideResNet18 on mini-ImageNet with
different widths and training iterations

I N T N

Width = X 0.25 71.95 70.20 70.40 69.15
Epoches = 200
Width = x 2 79.30 79.32 80.20 79.62

Epoches = 800

® All losses lead to similar performance when network is large enough
and trained longer enough. Why?

Zhihui Zhu (Ohio State University) Low-D Representation vis NC June 18, 2024 43 /65



Prevalence of NC under Different Training Scenarios

Are All Loses Created Equal?—A NC Perspective

Theorem (Informal, Zhou et al.'22)

Under the unconstrained feature model, with feature dim.

d > #class K — 1, for all the one-hot labeling based losses (e.g., CE, FL,
LS, MSE),

® NC are the only global solutions for all losses.

® All losses have benign global landscape w.r.t. (W, H ,b)
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Prevalence of NC under Different Training Scenarios

Are All Loses Created Equal?—A NC Perspective

Theorem (Informal, Zhou et al.'22)

Under the unconstrained feature model, with feature dim.

d > #class K — 1, for all the one-hot labeling based losses (e.g., CE, FL,
LS, MSE),

® NC are the only global solutions for all losses.

® All losses have benign global landscape w.r.t. (W, H ,b)

.

Implication for practical networks If network is large enough and
trained longer enough

® All losses lead to largely identical features on training
data—NC phenomena

® All losses lead to largely identical performance on test data
(experiments in the following slides)

Zhihui Zhu (Ohio State University)
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Prevalence of NC under Different Training Scenarios

Are All Loses Created Equal?—A NC Perspective

ResNet50 (with different training epoches) on CIFAR-10 with different

training losses

2.0 100 100
9 2
15 © g o 9%
o =1
- ) 3
§1.0 T 60 © 80
2 —— CE = —— CE
c —-— IS = —-— S
0.5 % 40 % 70
© —#— FL '9 —w— FL
= o~ MSE o— MSE
o0 - . 60
0 200 400 600 800 0 200 400 600 800 (] 200 400 600 800
Epoch Epoch Epoch

Within-Class Variability (NC1)

Zhihui Zhu (Ohio State University)

Train accuracy
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Testing accuracy
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Prevalence of NC under Different Training Scenarios

Are All Loses Created Equal?—A NC Perspective

ResNet50 (with different training epoches) on CIFAR-10 with different

training losses

2.0 100 100
—»— CE
—a— S a a
15 T ® g @ 9
= o~ MSE § 5
§1.0 T 60 @ 80
2 —— CE = —— CE
0.5 = —— LS =1 —=— LS
T e n @ 70 s
00 = o MSE = o MSE
"o 200 400 600 800 0 200 400 600 800 09 200 400 600 800
Epoch Epoch Epoch
Within-Class Variability (NC1) Train accuracy Testing accuracy
Observation: If network is large enough and trained longer enough,
all losses lead to largely identical NC features on training data.
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Prevalence of NC under Different Training Scenarios

All Losses Are Almost Created Equal

ResNet50 (with different network widths and training epoches) on
CIFAR-10 with different training losses

800 [t
FTols) 93.973 94.473

test Accce test ACCmse

1010 04.477 94.860

PTas) 04.160 |94.887

F:14%0] 93.913 94.400 94.670
.763 94.410 94.570
PINS) 93.567 94.297 (94,880 195047 TBYN) 03163 93.833 94.167 941537

hle]e] 92.517 93.363 93.707 94.337 ple]e] 92.090 92.630 93.240 93.293

0.25 0.5 1
Width

Cross-entropy

0.25 0.5 1 2
Width

Mean-squared Error

® Right top corners not only have

008) 94.483 94.807 94.953

PiTols) 94.290 94.780

p{e]e] 92.963 93.887 94.040 94.233 200 EEREER-ZROER-LRCIL)

pRoJo] 01.480 92.250 92.827 93.093 3 93.230 93.683 94.360

0.25 0.5 1
Width

Focal loss

0.25 0.5 1
Width

Label smoothing

better performance, but also have

smaller variance than left bottom corners

Zhihui Zhu (Ohio State University)
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Prevalence of NC under Different Training Scenarios

All Losses Are Almost Created Equal
ResNet50 (with different network widths and training epoches) on
CIFAR-10 with different training losses

test AcCce test ACCmse

800 EEEIERCIRT)
400 EERGEREIY )

200 EEEACIPITA pIils] 93.163 93.833 94.167

plole] ©2.517 93.363 93.707 94.337 92.090 92.630 93.240 93.293

0.25 0.5 1 2
Width

Mean-squared Error

0.25 0.5 1
Width

Cross-entropy

800 L

400 [ELTE)

pLole] 92.963 93.887 94.040 94.233

hIele] 01.480 92.250 92.827 93.093

0.25 0.5 1 2
Width

Label smoothing

0.25 0.5 1
Width

Focal loss

® Right top corners not only have better performance, but also have
smaller variance than left bottom corners

Observation: If network is large enough and trained longer enough,
all losses lead to largely identical performance on test data.

Zhihui Zhu (Ohio State University)
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Prevalence of NC under Different Training Scenarios

A Large Number of Class

Many applications have extremely large number of classes

Prediction -m
RoBERTa
Language Model
e A A A
Person identification e e e e
* 8.1b people in world Language models
* next word prediction/classification

e #class = vocabulary size

Anchor Negatives

Document
Collction
J \. Y
2arch Query / Retrieval Retrieve Re-Ranker Ranked V2, “)<‘
anddates | Cross-Encoder L m F
("3

Question Bi-Encoder

Supervised Contrastive

Self Supervised Contrastive

Retrieval systems Contrastive learning
each document represents one class « each data represents one class

Feature dim d is much smaller than the #classes K
Low-D Representation vis NC June 18, 2024 47 /65
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Neural Collapse with Feature Normalization

Spherical constraints are often used in practice for large number of classes

1
Iin Nkzzllf (Whyi, yk)
s.t. H’wkHQ =1, Hhk’lHQ =1, hk,i = (ﬁg(wk,i), Vie [n], Vke [K],

where 7 is the temperature parameter to scale the output logits.
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Neural Collapse with Feature Normalization

Spherical constraints are often used in practice for large number of classes

K n
!
Iin N;ZL’T (Whyi, yk)

s.t. Hwng =1, Hhk’lHQ =1, hk,i = (ﬁg(a}k,i), Vie [n], VEke [K],

where 7 is the temperature parameter to scale the output logits.

® Improve the quality of @ o
learned features with larger ' ™ P e ’-::;,.'
class separation [Yu et al., i -."",, 44 "";'.‘
2020, Wang and Isola, 2020] ‘ -';:'f,v 5 i i

® Improve test performance in Ft'“ A L/ 7 7
practice [Graf et al., 2021, - Ceteg) o - Gy %

Liu et al., 2021]

weight decay vs spherical constraint
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Prevalence of NC under Different Training Scenarios

Neural Collapse with Feature Normalization

When feature dimension d is larger than # class K [Yaras et al., 2022].

® Under the unconstrained feature model, a similar global landscape
result (any global solution obeys neural collapse & benign global
landscape) can be shown for:

s.t. ||wk||2 =1, ”hk’ZHQ =1,Vie [n], Vke [K]

® More advanced analysis based upon Riemannian optimization tools.
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Prevalence of NC under Different Training Scenarios

Neural Collapse with Feature Normalization

When feature dimension d is smaller than # class K [Jiang et al., 2024].
® GNC1.: variability collapse of within-class features

® GNC2: classifier converges to maximal “margin” (defined in next
slide), but may have varied pair-wise angles

® GNC3: self-duality between the classifiers and class-means of features

5 0.7 1.0 80
0.6 === =TT T o ——|
0 05 — 08 60
o -2 — v —— T=1
= 5{340.4 £175 506 20 i
§_4 ug; —— T=1/6 30.4 E —— 1=1/6
—- - —— T=1/7 0.2 20 —— T=1/7
0.1 —=- Optimal —— Weight Decay
-8 0.0 b —— 0.0 0
0 50 100 150 200 0 50 100 150 200 0 50 100 150 200 0 50 100 150 200
Epochs Epochs Epochs Epochs

® A smaller 7 leads to larger “margin” and better text performance

® GNC is prevalent across different modalities (see [Wu & Papyan'2024]
for experimental results on LLM)
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Prevalence of NC under Different Training Scenarios

Neural Collapse with Feature Normalization

When feature dimension d is smaller than # class K [Jiang et al., 2024].
® GNC2: classifier weights converge to the softmax code that
maximizes one-vs-rest distance
- defined as an optimization problem with a clear geometric meaning
- softmax code forms a simplex ETF when K < d+ 1.
- closely related to the Tammes problem (one-vs-one distance)

max min dist(wyg, {wg -k max min min dist(wyg, wy
nax min dist(wg, {we }rsr) e min min dist(ws, wi)

. o N 7

~~
one-vs-rest distance one-vs-one distance

.t wglla =1 st [lwglla =1

o — 7 T—w

-- Hyperplane ’:" ---- Hyperplane
1) — Distance )/ e Equivalentwhen K <d+ 11— >

* Open problem: are they

Convex Hull !
)
0 w; .
always equivalent ?

@/ °
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Prevalence of NC under Different Training Scenarios

Multi-label Learning Setup

Single-label Multi-label Set S
T , Label Y1
S 1
Label Y
xr
Label Y|S|

Lce(Ye(x),y) 2@1 Lce(Ve(x),y:)

Loss "Pick-all" Loss
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Last-Layer Geometry of Multi-label Learning
%J}W/gf" iii.

cat
Simplex
Collapse of gquiangular
0. —¢ last-layer features :;Eg_ll_wé)frame
Qe
] dog
Evolution of training epochs
iv. . { 7€ % } “
Scaled average
)
<
=
D
=
=
g
8o @ © Multi-label
iPlic > > ETF
) {22} (TS

® Neural collapse in multi-label learning with 3 classes where the colors
denote the class label;

® Respectively, left/mid/right panel shows representations during
early/mid/late phase of training unconstrained feature model.
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Prevalence of NC under Different Training Scenarios

Multilabel-MNIST Synthetic Example

Multipl.
o 1
o 2

)
® Experiments with simple MLP architectures.
® The ETF structure still holds for data imbalancedness.
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Prevalence of NC under Different ining Scenarios

Neural Collapse for Multi-Label Learning

—— ResNet18 o —— ResNet18 N —— ResNet18 oe] ) —— ResNet18
B ~—+— ResNet50 e ~—+— ResNet50 ~+— ResNet50 ost A ~+— ResNet50
- —— VGG16 " —— VGG16 My —— VGG16 il —e— VGG16
S- —— VGG19 26 —— VGG19 oo —— VGG19 Sl —— VGG19
04
i os
02 o2
o 00 o0
7 T 7 w0 1k o s 10 R R R T T TR W v v i 1 1 % B W _ie ik W U5 e
Epoch Epoch Epoch Epoch

(a) NC1 (MLab-MNIST) (b) NC2 (MLab-MNIST) (c) NC3 (MLAB-MNIST) (d) N'C, (MLab-MNIST)

—e— ResNet18 —e— ResNet18 —e— ResNet18 o —e— ResNet18
° —+— ResNet50 L ~+— ResNet50 = ~+— ResNet50 ost ~+— ResNet50
6 —— VGG16 o —»— VGG16 -." —»— VGG16 04 —=— VGG16
- —— VGG19 g —— VGG19 oo —— VGG19 —t—

Al
T % s 7510 i 10 s 20 B TR I o 1 10 175 20 T % % 75_im s 10 us 200
Epoch Epoch

(e) NC1 (MLab-Cifar10) (f) NC2 (MLab-Cifar10) (g) NC3 (MLab-Cifar10) (h) N'C,, (MLab-Cifar10)
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Prevalence of NC under Different Training Scenarios

Progressive separation from shallow to deep layers

e How the data are progressively separated across the layers?®

ResNet18 (Cifar-10) CE

3

2

Layer 1 Layer 2 Layer 4 Layer6

y . ° - More |S
- v - 2
-« - collapse EE
. o
- - a - -
a
» - *

T3 i 5 %
Block Index
deeper

® Effect of depths: create progressive separation and concentration
(geometric decay of NCy)

® Details will be presented in the next lecture

8He & Su, A Law of Progressive Separation for Deep Learning, 2022.
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Prevalence of NC under Different Training Scenarios

Implications on Transfer Learning

Source Dataset Source Labels

Dense Layers

i A 3 . ﬂullﬂ Convolutional Layers
P i B o B e > ooy
ST e el ] - 2 Gane
- —
Domain ESERLNE P B i + Car
SBEET R =
& B SR RE of 5 "¢ o
5 B asisaT=wm Networks |
.'5 ,
s I Transfer Learning I
B
Target Dataset l
New
~— Frozen ———~ cjagsifi ier "
Target gg
Domain [t — . O4
Convolutional Layers Dense Layers Target Labels
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Prevalence of NC under Different Training Scenarios

Neural Collapse is Transferable

® Progressive separation is robust to distribution shift.

5
RES 18 (CIFAR10 Train)
« RES 34 (CIFAR10 Train)
3! RES 18 (CIFAR10 Test)
- Pretrained on CIFAR10 * RES 34 (CIFAR10 Test)
RES 18 (CIFAR10.2)
- Evaluate layer-wise NC on § 1/ e a2
CIFAR10 training, B
CIFAR1O0 testing, & T =
CIFAR10.2 testing (OOD) SR
- Model is fixed without -3
fine-tuning 1 3 5 7 9 11 13 15

Block (Shallow - Deep)

® Observe similar trend of progressive separation and collapse

¢ Distribution shift causes slightly less collapse (worse performance)

Zhihui Zhu (Ohio State University) Low-D Representation vis NC
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Prevalence of NC under Different Training Scenarios

Neural Collapse is Transferable

® Progressive separation is transferable among different tasks

35 70
—— N
. --*- Transfer Acc 65
- ResNet-34 pre-trained on 30 603
ImageNet - 555
O [v]
- Evaluate on CIFAR10 225 0%
8 458
- Model is fixed without 20 405G
. . . =
fine-tuning 35
. . e 30
- Train a linear classifier on 5973 %5 73 9% 11 13 15
top of the features Blocks (Shallow—Deep)

® |ayer-wise NC exhibits two phases on downstream tasks:

® Phase 1: progressively decreasing (universal feature mapping)
® Phase 2: progressively increasing (specific feature mapping)

® Projection heads and fine-tuning help transferability
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Efficient Layer Fine-tuning

Fine-tuning one key intermediate layer is sufficient

) Layers Frozen

Layers to update

New Classifier

i

New Classifier

Trained Layer L

f
' N '
' N '
' 1 '
' i '
' i '
' N '
! [ Trained Layer L i '
N " '
' : n : Skip Connecton }
'
' 4 1 4 H
' Trained Layer i . Trained Layer i '
' . . '
' : o : '
i : i : i
' '
' 4 . A I
H Trained Layer 1 ' Trained Layer 1 '
! '
: A v A :
'
' Downstream ' ! Downstream '
! Data - Data '
L] '
' i '
'
' Layer FT i SCLFT '
B

(a) Nustration of layer fine-tuning
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Efficient Layer Fine-tuning

Fine-tuning one key intermediate layer is sufficient

) Layers Frozen

Layers to update

:'"""""""",l' """"""""" 1 90
! New Classifier i New Classifier E
: 7% . ) ! 80
E [ Trained Layer L . Trained Layer L E o 20
E * E E % smm..em..i g
1 —_

qg 60
| : " : ! c
E A 0 A ' © 50 —e— Linear Probing
: : = —e— Layer FT
: A i 1 : 40 —— SCLFT
i Downsiream . —— Full Model FT
E L. FT : : SCLFT : 101 102
D Al ot ' Num. of Samples Per Class

a) Illustration of layer fine-tunin b) Fine-tuning results on CIFAR-10

Y/ g g
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Efficient Layer Fine-tuning

Fine-tuning one key intermediate layer is sufficient

) Layers Frozen

Layers to update
L 100

] i H 1.0
: New Classifier ' New Classifier :
- %Y ¥ % - E
' o ' 95 08
' - 1 " ' o)
! [ Trained Layer L e Trained Layer L ' . S
! : ' D st S o 0
' : : i Gomecin |
' 4 i 4 J ' < 0.63
i ' ' - 9]
' i ' 9]
' . - . ' [ I
: : ' : ;2% 04
: A ¥ A : g &
; 'y : F s —e— Transfer Acc. (Layer FT) |, 25
: .
' 4 0 0 E —*— Parameter count %
\ E E , 75 —e— Transfer Acc. (SCL FT) o
: ' .
' E E ! 0 2 a 6 8 10 12
e LayerFT [ SeLFT . H # of Layers Fine-tuned

(a) Nustration of layer fine-tuning (b) Fine-tuning more layers on CIFAR-100
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Conclusion

Conclusion of Lecture 1-2

The objective of learning:
Transform nonlinear and complex data to a
linear, compact and structured representation.

h3

©

[-— (47 8 Neural collapse
L : ﬂ \i*“"i‘ representation (by
n“@ = standard CE training)

representation (by MCR?
training in section 2)

N - feature mapping T
. < N 7
A A 2 ; \ " Diverse & discriminative
2

Understanding learned representation (NC) can help
® design architectures (open the black-box) and training methods

® improve/understand efficiency, robustness, transferability, etc.

Zhihui Zhu (Ohio State University) Low-D Representation vis NC June 18, 2024
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Conclusion of Lecture 1-2

The objective of learning:
Transform nonlinear and complex data to a
linear, compact and structured representation.

&
Neural collapse

\\\i ‘/}ga representation (by
by & standard CE training)

Diverse & discriminative
representation (by MCR?
training in section 2)

Lecture 1-3: understand feature learning through learning dynamics
Section 2 (this afternoon): learn diverse & discriminative representations,
design white-box networks to better capture Low-D structures

Can be extended to other learning paradigms, such as self-supervised
learning, multi-modality learning




Conclusion
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