ReCoRe

Regularized Contrastive Representation Learning of World Model

Rudra P.K. Poudel Harit Pandya

Stephan Liwicki

Roberto Cipolla

Cambridge Research Laboratory Toshiba Europe Ltd.

World Model

Learns the environment dynamic in a (self-)supervised manner, which

- > enables planning in the imaginations
- improves the sample efficiency

Current Problems of World Models

Works well on in-distribution tests

but

poor out-of-distribution (OoD) generalization!

iGibson OoD Success %	100k	500K
RAD	0.5	36.3
CURL	4.7	31.4
DreamerV2	1.3	1.5
Masked WM	1.7	2.5

Inspiration

Works well on in-distribution tests

but

poor out-of-distribution (OoD) generalization!

iGibson OoD Success %	100k	500K
RAD	0.5	36.3
CURL	4.7	31.4
DreamerV2	1.3	1.5
Masked WM	1.7	2.5
DreamerV2 + Grounding DINO	37.1	50.0

ReCoRe

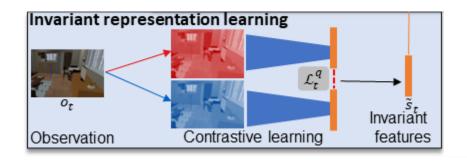
Can we learn generalized representation with

- less training data?
- smaller model?
- efficient adaptation to downstream tasks?

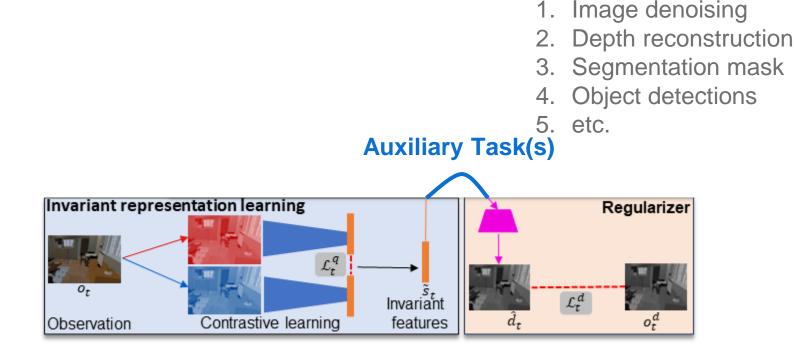
Ideas,

- World model: separates representation and policy learning
- Contrastive learning: invariant global context representations
- Regularization: (causality) intervention invariant auxiliary task to explicitly enforce the invariance and preserve the local details

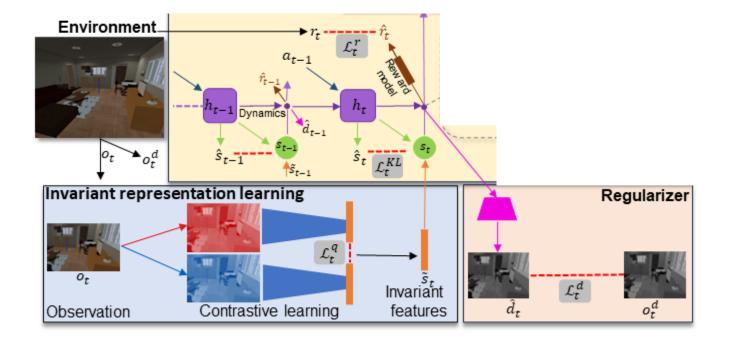
Contrastive Learning: Improves Invariant Global Context Representations



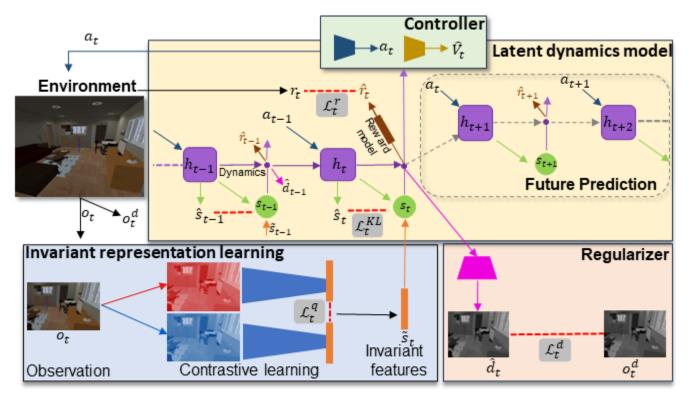
Intervention Invariant Auxiliary Tasks: Explicitly Forcing the Invariance and Preserving Details



Learning World Model Independent of the Policy, Better Generalization on Downstream Tasks



Learning the Policy in the Imaginations, Improves Sample Efficiency



Out-of-Distribution Results

ReCoRe matches SoTA Grounding DINO on 100k, outperforms on 500k.

iGibson OoD Success %	100k	500K
RAD	0.5	36.3
CURL	4.7	31.4
DreamerV2	1.3	1.5
Masked WM	1.7	2.5
DreamerV2 + Grounding DINO	37.1	50.0
ReCoRe	36.0	59.7

Sim-to-Real Results

ReCoRe outperforms Grounding DINO.

iGibson-to-Gibson Success %	100k	500K
RAD	0.0	30.2
CURL	6.7	36.7
DreamerV2 + Grounding DINO	40.8	60.3
ReCoRe	41.6	71.9

In-Distribution Results with DMC Control

ReCoRe also works with **image-denoising as an auxiliary task**. Better intervention invariant auxiliary tasks, better results.

100k Steps Total Rewards	ReCoRe + Image	ReCoRe + Seg	CURL	Dreamer
Finger, spin	486	474	767	341
Cartpole, swingup	472	449	582	326
Reacher, easy	327	982	538	314
Cheetah, run	321	400	299	235
Walker, walk	654	739	403	277
Ball in cup, catch	830	859	769	246

Similar results hold for 500k.

Ablation of ReCoRe

Ablation of proposed hypothesis,

- Contrastive learning: good for global context representations
- Regularization: (causality) intervention invariant auxiliary task to explicitly enforce the invariance and preserve the local details

iGibson OoD Success %	500K	
ReCoRe	59.7	
ReCoRe - CL (Contrastive Learning)	5.0	
ReCoRe - CL (Contrastive Learning) + DA (Data Augmentation)	22.1	
ReCoRe - D (invariant aux. task)	0.8	
ReCoRe - D (invariant auxiliary task) + I (RGB reconstruction)	19.2	

ReCoRe

Regularized Contrastive Representation Learning of World Model

- Intervention invariant auxiliary tasks,
 - o improves OoD and sim-to-real generalization of world model
 - o stronger invariance auxiliary tasks, improves results

Project Website and Code