

AdaShift: Learning Discriminative Self-Gated Neural Feature Activation With an Adaptive Shift Factor

Sudong Cai

Graduate School of Informatics, Kyoto University

Introduction

• Preliminaries

Introduction

Self-Gated Activation Functions

KYOTO UNIVERSITY

京都大学。00

Intuition

X

A critical problem: Mismatched Feature Scoring (MFS)¹ $u_{\theta_{u,x'}}$ $heta_{oldsymbol{w},oldsymbol{x}^{oldsymbol{l}}}$ x_{-} \boldsymbol{x} W \mathbf{W} W $heta_{oldsymbol{w},oldsymbol{y}^{\mathsf{I}}}$ $heta_{oldsymbol{u},oldsymbol{y}^{oldsymbol{\prime}}}$ C \rightarrow K— W U Intialization $\tilde{x} = \cos \theta_{\boldsymbol{w}, \boldsymbol{x}} \| \boldsymbol{w} \| \| \boldsymbol{x} \|$ Layer-1 ${\boldsymbol{\mathcal{X}}}$ Layer- $(\tau$

1. Sudong Cai. IIEU: Rethinking Neural Feature Activation from Decision-Making. In Proc. ICCV, pages 5796-5806, 2023. **KYOTO UNIVERSITY**

 $H \cdot L$

Intuition

Why AdaShift – Remaining problems in the modeling of IIEU

Can feature and filter norms play a useful role in feature re-weighting?

Intuition of AdaShift

- Rethinking the meaning of feature and filter norms from a Softmax-based classification
 - Intuition 5.1) Feature and filter norms present local and dataset-level non-local cues, respectively

Nclasses in total Pre-conditions: $\boldsymbol{w}(i)$: The representative filter of the class-*i* Let $\boldsymbol{w}(j)$: The representative filter of an arbitrarily class-j \boldsymbol{x} is classified as the class-*i* $\forall \boldsymbol{w}\left(i\right) \neq 0, \forall \boldsymbol{x} \neq 0$ \boldsymbol{x} : The representative feature of the input (image or pixel) $\begin{array}{ccc} \text{For } i \neq j \\ \longrightarrow \end{array} \quad \frac{e^{\tilde{x}_i + b_i j}}{\sum_{c=1}^C e^{\tilde{x}_c + b_c}} > \frac{e^{\tilde{x}_j + b_j j}}{\sum_{c=1}^C e^{\tilde{x}_c + b_c}} \iff e^{\tilde{x}_i + b_i j} > e^{\tilde{x}_j + b_j j} \end{array}$ $\|\boldsymbol{w}(i)\| \|\boldsymbol{x}\| \cos \theta_{\boldsymbol{w}(i),\boldsymbol{x}} + b_i \qquad > \qquad \|\boldsymbol{w}(j)\| \|\boldsymbol{x}\| \cos \theta_{\boldsymbol{w}(j),\boldsymbol{x}} + b_j$ **KYOTO UNIVERSITY**

Intuition of AdaShift

	$\ \boldsymbol{w}(i)\ \ \boldsymbol{x}\ \cos \theta_{\boldsymbol{w}(i),\boldsymbol{x}} + b_i > \ \boldsymbol{w}(j)\ \ \boldsymbol{x}\ \cos \theta_{\boldsymbol{w}(j),\boldsymbol{x}} + b_j$
$\xrightarrow{\text{Let}}$	$\alpha = b_j - b_i$
\longrightarrow	$\left\ \boldsymbol{w}\left(i\right)\right\ \cos\theta_{\boldsymbol{w}\left(i\right),\boldsymbol{x}}-\left\ \boldsymbol{w}\left(j\right)\right\ \cos\theta_{\boldsymbol{w}\left(j\right),\boldsymbol{x}}\right.>\frac{\alpha}{\left\ \boldsymbol{x}\right\ }$
Case 1: $\ \boldsymbol{x}\ \gg c $	<i>μ</i> Filter norms are influential & Feature norms are not decisive
Case 2: $\ \boldsymbol{x}\ \ll c $	κ Filter norms are influential & Feature norms are influential
Case 3: Others \longrightarrow	Filter norms are influential & Feature norms matters
AdaShift Prototype \rightarrow	Complementary information : tensor-level non-local cues $\phi\left(\tilde{x}\right) = \varsigma\left(\tilde{x} + \Delta\right)\tilde{x}$
KYOTO UNIVERSIT	Υ

京都大学~0%

Experiment

- Dataset
 - ImageNet [90]
 - The most popular large-scale visual (image) recognition benchmark dataset
 - CIFAR(-100) [27]
 - A popular image recognition benchmark dataset of small-size images
 - ◆ COCO [21]
 - A popular large-scale object detection benchmark dataset
 - ♦ KITTI-Materials [23]
 - The benchmark dataset of RGB RMS

[90] J. Deng et al., Imagenet: A largescale hierarchical image database, CVPR, 2009

[27] A. Krizhevsky et al., Learning multiple layers of features from tiny images, Master's thesis, University of Toronto, 2009

[21] T.-Y. Lin et al., Microsoft coco: Common objects in context, *ECCV*, 2014

[23] Sudong Cai et al., RGB Road Scene Material Segmentation, ACCV, 2022

Results

Comparison of AdaShift-B and -MA with prevailing and (other) SOTA activation models on ImageNet using ResNet-50 and ResNet-101 backbones. In the comparison using the ResNet-50 backbone, the *number of parameters* and *throughput* of each model are indicated in Purple and Blue colors, respectively

京都大学

000

Results

Comparison of AdaShift-enhanced ResNet-50(s) to representative vision Transformer counterparts. " \star " denotes the improved ViT trained with an extra regularization. Details can be found in Appendix G.2. (Training with Advanced Recipe)

Network	Activation	Resolution	Train. Epoch	#Params.	FLOPs	Throughput	Top-1(%)↑
ViT-B/16 *	GELU	224×224	300	86.6M	16.9G	775.6	79.7
PoolFormer-S24	GELU	224×224	300	21.4M	3.5G	1144.6	80.3
Swin-T	GELU	224×224	300	28.3M	4.5G	1052.2	81.3
ResNet-50	AdaS-B (ours)	224×224	300	25.6M	4.1G	1352.8	80.8
ResNet-50	AdaS-Hyb (ours)	224×224	300	28.2M	4.2G	1201.6	81.7

11

Results

The Acc. curves (left) and loss curves (right) of ResNet-14 (Top) and ResNet-26 (Bottom) backbones with different activation models

Gratitude for your time and patience!

AdaShift: Learning Discriminative Self-Gated Neural Feature Activation With an Adaptive Shift Factor

Sudong Cai

Graduate School of Informatics, Kyoto University

京都大学

13

