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⚫ Preliminaries
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Comprehensive scoring 

(relaxed similarity)

Importance score (weight)
Neural Activation:  

Feature selection by weights



⚫ Self-Gated Activation Functions
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⚫ A critical problem: Mismatched Feature Scoring (MFS)1

1. Sudong Cai. IIEU: Rethinking Neural Feature Activation from Decision-Making. In Proc. ICCV, pages 5796-5806, 2023.
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Intuition

⚫ Why AdaShift – Remaining problems in the modeling of IIEU

1. Efficiency of training

How about if we also consider 

activating an un-projected feature (unit)?

2. Extensibility

ActLinear Linear Expensive FFN with high expansion ratio

Can feature and filter norms play a useful role in feature re-weighting?
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Intuition of AdaShift

⚫ Rethinking the meaning of feature and filter norms from a Softmax-based classification

 (Intuition 5.1) Feature and filter norms present local and dataset-level non-local

cues, respectively

The representative filter of the class-i

The representative feature of the input (image or pixel)

The representative filter of an arbitrarily class-j 

For

is classified as the class-i
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Intuition of AdaShift

Case 1:

Filter norms matter The feature norms is not decisiveBoth filter and feature norms matter

Case 2:

AdaShift Prototype
Complementary information : tensor-level non-local cues

Case 1:

Filter norms are influential & Feature norms are not decisive

Filter norms are influential & Feature norms are influential

Case 2:

Case 3: Others

Filter norms are influential & Feature norms matters
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⚫ Dataset

◆ ImageNet [90]

• The most popular large-scale visual (image) recognition benchmark dataset

[23] Sudong Cai et al., RGB Road Scene Material Segmentation, ACCV, 2022

[90] J. Deng et al., Imagenet: A largescale hierarchical image database, CVPR, 2009

[27] A. Krizhevsky et al., Learning multiple layers of features from tiny images, Master’s thesis, University of Toronto, 2009

◆ KITTI-Materials [23]

• The benchmark dataset of RGB RMS

◆ CIFAR(-100) [27]

• A popular image recognition benchmark dataset of small-size images

◆ COCO [21]

• A popular large-scale object detection benchmark dataset

[21] T.-Y. Lin et al., Microsoft coco: Common objects in context, ECCV, 2014
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Comparison of AdaShift-B and -MA with prevailing and (other) SOTA activation models on 

ImageNet using ResNet-50 and ResNet-101 backbones. In the comparison using the 

ResNet-50 backbone, the number of parameters and throughput of each model are indicated 

in Purple and Blue colors, respectively 
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Network Activation Resolution Train. Epoch #Params. FLOPs Throughput Top-1(%)↑

ViT-B/16 GELU 224 × 224 300 86.6M 16.9G 775.6 79.7

PoolFormer-S24 GELU 224 × 224 300 21.4M 3.5G 1144.6 80.3

Swin-T GELU 224 × 224 300 28.3M 4.5G 1052.2 81.3

ResNet-50 AdaS-B (ours) 224 × 224 300 25.6M 4.1G 1352.8 80.8

ResNet-50 AdaS-Hyb (ours) 224 × 224 300 28.2M 4.2G 1201.6 81.7

Comparison of AdaShift-enhanced ResNet-50(s) to representative vision Transformer counterparts. 

“” denotes the improved ViT trained with an extra regularization. Details can be found in Appendix 

G.2. (Training with Advanced Recipe)  
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The Acc. curves (left) and loss curves (right) of ResNet-14 (Top) and ResNet-26 (Bottom) backbones 

with different activation models 
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