

# Learned trajectory embedding for subspace clustering

LUND UNIVERSITY

Yaroslava Lochman<sup>1</sup> Carl Olsson<sup>1,2</sup> Christopher Zach<sup>1</sup>

<sup>1</sup>Chalmers University of Technology <sup>2</sup>Lund University



CHALMERS

 $Learned\ trajectory\ embedding\ for\ subspace\ clustering$ 

## **Point trajectories**



Courtesy of **Tumanyan, Singer et al.** DINO-tracker: taming DINO for self-supervised point tracking in a single video

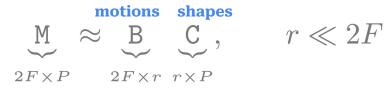


Courtesy of Wang et al. Tracking everything everywhere all at once

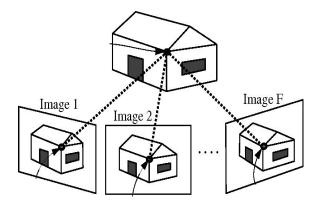
CHALMERS

Learned trajectory embedding for subspace clustering **Rigid motion estimation** 

Matrix factorization for shape and motion reconstruction



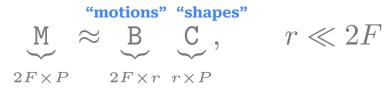




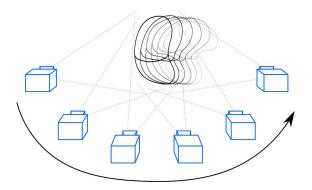
CHALMERS UNIVERSITY VIENT CHARGES

Learned trajectory embedding for subspace clustering Nonrigid motion estimation

Matrix factorization for shape and motion reconstruction







Courtesy of **Badias et al.** MORPH-DSLAM: model order reduction for physics-based deformable SLAM

CHALMERS UNVERSITY VIENCES IN CONCEPTION CONCEPTION

Learned trajectory embedding for subspace clustering

# **Motion segmentation**

Multiple independent motions. Important for dynamic scene understanding

Chicken-and-egg problem (even for **rigid motion**) + contaminated by outliers and missing points

$$\operatorname{M} \underbrace{\mathbb{P}_{\pi}}_{P \times P} \approx \begin{bmatrix} \mathbb{B}_{1} \mathbb{C}_{1} & \dots & \mathbb{B}_{c} \mathbb{C}_{c} \end{bmatrix} \\
 \operatorname{group 1} & \operatorname{group c}$$



## Introduction



Learned trajectory embedding for subspace clustering

# **Motion segmentation methods**

- Hypothesis generation-based *Robust statistical methods, joint optimization*
- Spectral clustering Affinity matrix design, pairwise or multi-view relations
  - Sparse subspace clustering Use self-expressiveness, sparse optimization

"Unfortunately, traditional cluster-based trajectory segmentation methods rely on **heavy optimization** and **hand-crafted features**, and are hard to scale with dense trajectories" — **Zhao et al.** ParticleSfM

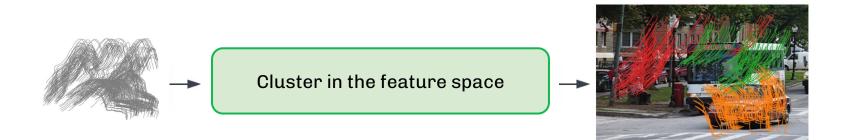




Learned trajectory embedding for subspace clustering

# **Proposed method**

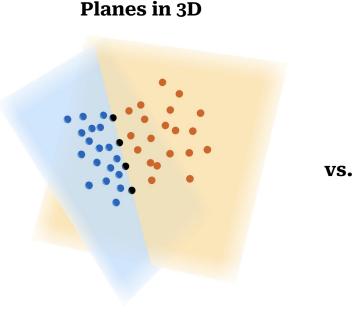
**Goal:** learn trajectory feature representation useful for clustering so that no simultaneous grouping and motion estimation at test-time is needed



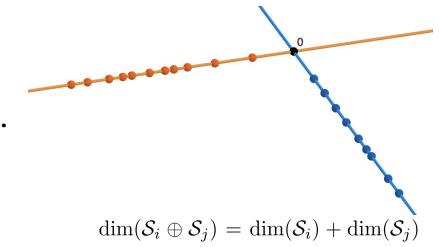


Learned trajectory embedding for subspace clustering **Disjoint subspace assumption** 

- Motion models do not intersect in high dimensional trajectory space
- In this work, we build on this **disjoint subspace assumption**

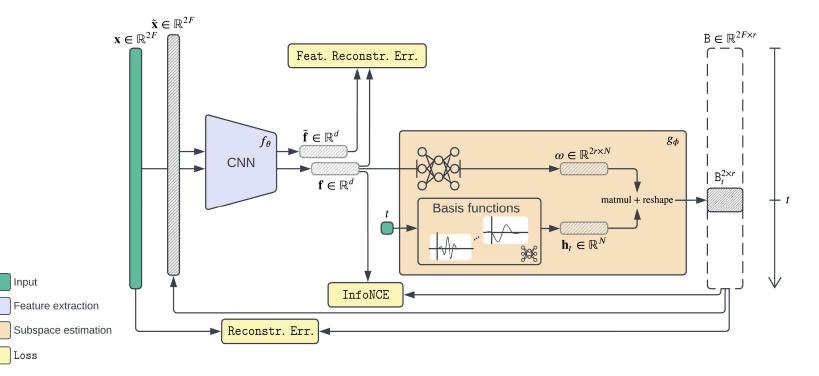


Motions as low dim subspaces in high dim space



Learned trajectory embedding for subspace clustering

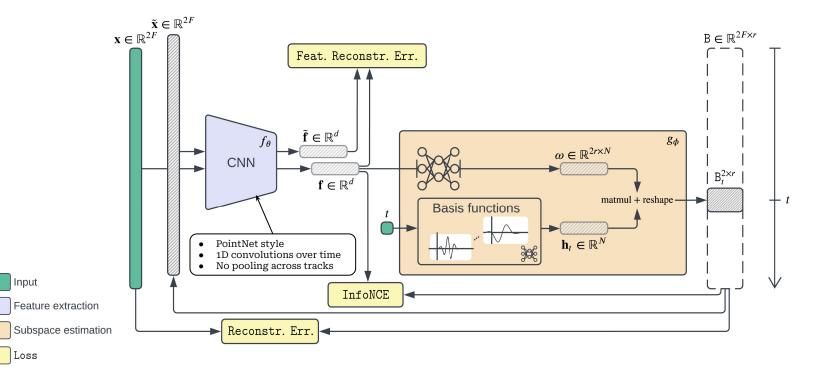
## **Proposed approach**



CHALMERS UNIVERSITY CONSCIENT ALLAND UNIVERSITY

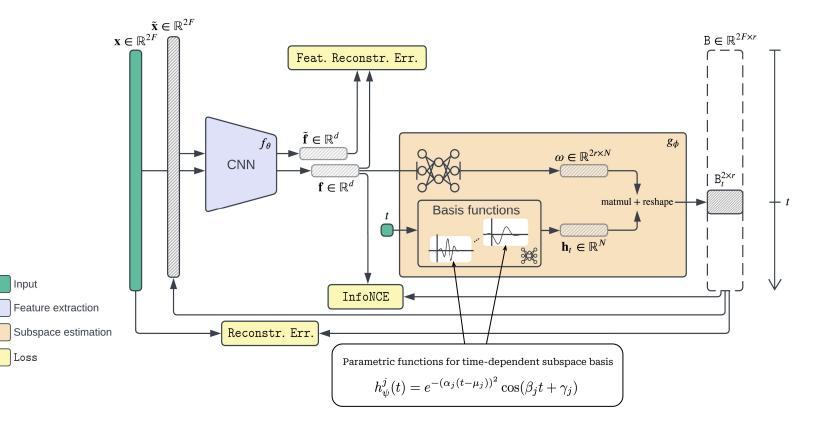
Learned trajectory embedding for subspace clustering

## **Proposed approach**



Learned trajectory embedding for subspace clustering

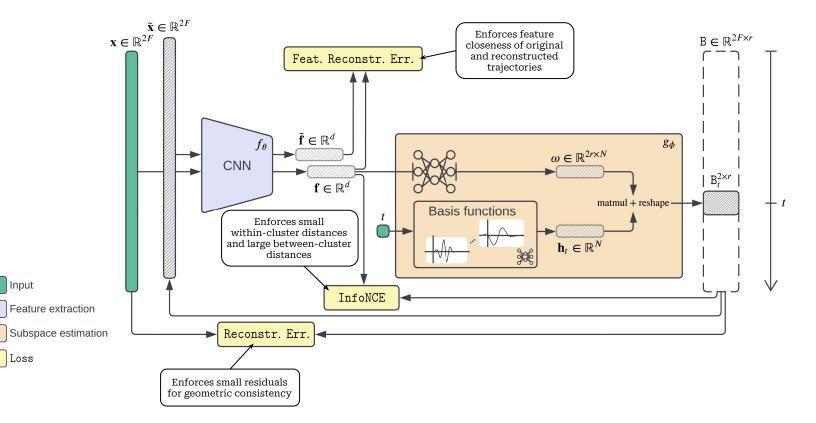
# **Proposed approach**



CHALMERS

Learned trajectory embedding for subspace clustering

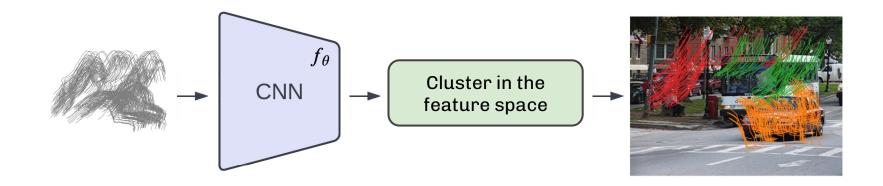
## **Proposed approach**



12

Learned trajectory embedding for subspace clustering

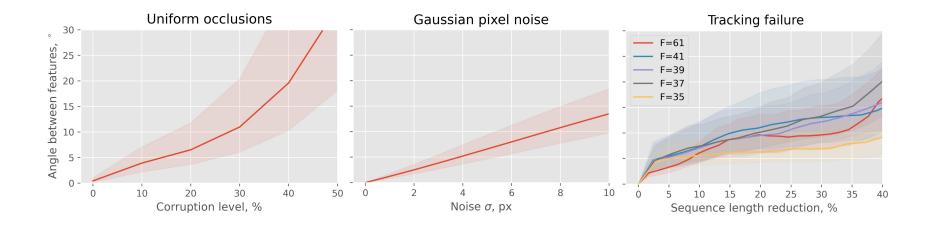
# Inference: fully observed trajectory



CHALMERS UNVERSITY V//SP ALMAGE

 $Learned\ trajectory\ embedding\ for\ subspace\ clustering$ 

# Approximate invariances of $f_{\theta}$



Learned trajectory embedding for subspace clustering Inference: trajectory completion

• Formulate an objective to fill-in missing values

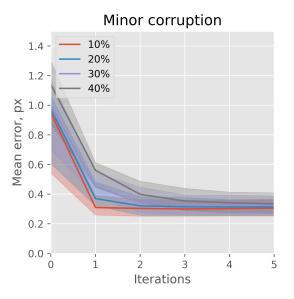
$$\hat{\mathbf{x}}(\bar{\mathbf{x}}) - \mathtt{BB}^{\dagger} \hat{\mathbf{x}}(\bar{\mathbf{x}}) \big\|^2 \to \min_{\bar{\mathbf{x}}} \hat{\mathbf{x}}$$

• Obtain linear solution for a fixed subspace

$$\bar{\mathbf{x}}^* = \mathtt{A}(\mathtt{B})\mathbf{x}$$

• Yields an iterative procedure

$$\begin{array}{l} \mathsf{B}_{0} \leftarrow B_{\theta,\phi}(\mathbf{x}_{\mathsf{vis}},\mathbf{t}) \\ \bar{\mathbf{x}}_{i} \leftarrow \mathsf{A}(\mathsf{B}_{i-1})\mathbf{x} \\ \mathsf{B}_{i} \leftarrow B_{\theta,\phi}(\mathbf{w}\odot\mathbf{x} \!+\! \bar{\mathbf{w}}\odot\bar{\mathbf{x}}_{i},\mathbf{t}) \end{array}$$



🔬 Lund University 🛛 🗸 🖊

Learned trajectory embedding for subspace clustering
Inference: trajectory completion

• Formulate an objective to fill-in missing values

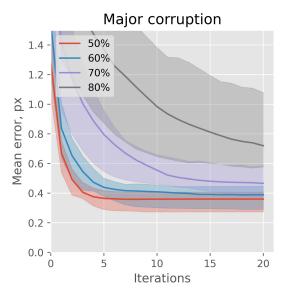
$$\hat{\mathbf{x}}(\bar{\mathbf{x}}) - \mathtt{B}\mathtt{B}^{\dagger}\hat{\mathbf{x}}(\bar{\mathbf{x}}) \big\|^2 o \min_{\bar{\mathbf{x}}} \mathbf{x}$$

• Obtain linear solution for a fixed subspace

$$\bar{\mathbf{x}}^* = \mathtt{A}(\mathtt{B})\mathbf{x}$$

• Yields an iterative procedure

$$\begin{array}{l} \mathsf{B}_{0} \leftarrow B_{\theta,\phi}(\mathbf{x}_{\mathsf{vis}},\mathbf{t}) \\ \bar{\mathbf{x}}_{i} \leftarrow \mathsf{A}(\mathsf{B}_{i-1})\mathbf{x} \\ \mathsf{B}_{i} \leftarrow B_{\theta,\phi}(\mathbf{w}\odot\mathbf{x} \!+\! \bar{\mathbf{w}}\odot\bar{\mathbf{x}}_{i},\mathbf{t}) \end{array}$$



LUND UNIVERSITY

## Learned trajectory embedding for subspace clustering Clustering error on standard datasets

|            | Hopkins155 |        | Hopkins12 |      | KT3DMoSeg |       |        |
|------------|------------|--------|-----------|------|-----------|-------|--------|
| Method     | Mean       | Median | Time      | Mean | Median    | Mean  | Median |
| RANSAC     | 9.76       | 3.21   | 194ms     | -    | -         | -     | -      |
| GPCA       | 10.34      | 2.54   | 417ms     | -    | -         | 34.60 | 33.95  |
| MSL        | 5.03       | 0.00   | 19h 11m   | -    | -         | -     | -      |
| LSA        | 4.94       | 0.90   | 9.47s     | -    | -         | 38.30 | 38.58  |
| $ALC_5$    | 3.76       | 0.26   | 5m 15s    | 3.81 | 0.17      | 24.31 | 19.04  |
| $ALC_{sp}$ | 3.37       | 0.49   | 6m 11s    | 1.28 | 1.07      | -     | -      |
| LRR        | 5.41       | 0.53   | 1.1s      | -    | _         | 33.67 | 36.01  |
| SSC        | 2.45       | 0.20   | 920ms     | -    | -         | 33.88 | 33.54  |
| RSIM       | 1.01       | 0.00   | 176ms     | 0.68 | 0.70      | -     | -      |
| MultiCons  | 4.40       | -      | 40ms      | -    | -         | -     | -      |
| Ours       | 0.62       | 0.0    | 9ms       | 5.12 | 2.04      | 5.85  | 0.80   |