

GSNeRF: Generalizable Semantic Neural Radiance Fields with Enhanced 3D Scene Understanding

¹National Taiwan University, ²NVIDIA

Zi-Ting Chou¹

I-Jieh Liu¹

Yu-Chiang Frank Wang^{1,2}

Neural Radiance Field (NeRF) (1/2)

- NeRF: Synthesizes novel views of complex 3D scenes from 2D images by representing the scene as neural networks.
- Input: Multi-view images of a scene
- Output: Novel-view image of the scene

Neural Radiance Field (NeRF) (2/2)

• Core Process: Encodes spatial coordinates and viewing directions, outputs color and density, and applies volume rendering to produce images.

What is *Generalizable NeRF*?

Generalizable: one model weight for every scene

Selleranzable Merri.

During Training (seen scene)

During Testing (unseen scene)

Input

Output

How Generalizable NeRF works?

• pixel NeRF (CVPR'21)

• Infers novel view of unseen scene from input images using pixel-aligned features.

Our Task

• Enable the generalizable NeRF with novel view semantic segmentation ability.

- Generalizable Semantic Neural Radiance Fields with Enhanced 3D Scene Understanding

- Generalizable Semantic Neural Radiance Fields with Enhanced 3D Scene Understanding

A. Semantic Geo-Reasoning

 $\odot\,$ Extract semantic and geometry features from a scene.

B. Depth-Guided Visual Rendering

 Utilize the extracted geometric information to perform depth-guided image and semantic rendering.

- Generalizable Semantic Neural Radiance Fields with Enhanced 3D Scene Understanding

A. Semantic Geo-Reasoning

○ Extract semantic and geometry features from a scene.

- Generalizable Semantic Neural Radiance Fields with Enhanced 3D Scene Understanding

B. Depth-Guided Visual Rendering

 Utilize the extracted geometric information to perform depth-guided image and semantic rendering.

1

Image rendering loss: L2 loss

Semantic loss: Cross-entropy loss

$$\mathcal{L}_{image} = \sum_{r \in R} \|\mathbf{C}(r) - \hat{\mathbf{C}}(r)\|_2^2$$

 $\mathcal{L}_{sem} = \sum_{r \in R} (\mathbf{S}(r) \text{log} \hat{\mathbf{S}}(r))$

- Quantitative Evaluation
 - ScanNet & Replica Datasets
 - ScanNet: Real-world 3D indoor scene dataset.
 - Replica: Synthetic 3D indoor scene dataset.
 - Experimentation

• S-Ray (CVPR '23) uses multi-view GT depth as input. Therefore, we conduct experiments on our method with and without depth supervision.

Generalized method	GT Depth	GT Depth ScanNet [5]					Replica [30]				
	Train / Test	mIoU	acc. / class acc.	PSNR ↑	SSIM ↑	LPIPS↓	mIoU	acc. / class acc.	PSNR ↑	SSIM ↑	LPIPS↓
Neuray [21] + semhead	V / V	52.09	67.81 / 61.98	25.01	83.07	31.63	44.37	79.93 / 54.25	26.21	87.37	30.93
GeoNeRF [16] + semhead	V 1	53.78	76.18 / 61.90	32.55	90.88	12.69	45.12	81.67 / 52.36	28.70	88.94	20.42
S-Ray [20]	VIV	55.53	77.79 / 60.92	25.19	83.66	30.98	45.30	80.48 / 53.72	26.38	88.13	30.04
GSNeRF (Ours)	V1	58.30	79.79 / 65.93	31.33	90.73	12.53	51.52	83.41 / 61.29	31.16	92.44	12.54
MVSNeRF [3] + semhead		43.06	66.90 / 53.63	24.14	80.36	34.63	30.21	69.35 / 39.75	23.68	84.37	28.08
GeoNeRF [16] + semhead		45.11	67.12 / 53.44	30.75	88.27	16.48	40.35	74.63 / 49.18	29.92	91.14	17.60
GNT [36] + semhead		43.49	62.06 / 51.84	24.39	82.37	28.36	38.14	71.44 / 47.46	24.56	87.31	20.97
Neuray [21] + semhead		46.09	66.39 / 53.79	25.24	84.39	31.33	40.91	76.23 / 50.15	27.80	89.55	23.68
S-Ray [20]		47.69	64.90 / 54.47	25.13	84.18	30.44	43.27	77.63 / 52.85	26.77	88.54	22.81
GSNeRF (Ours)		52.21	74.71 / 60.14	31.49	90.39	13.87	51.23	83.06 / 61.10	31.71	92.89	12.93

- Qualitative Evaluation (generalized setting)

16

- Test time fine-tuning
 - Although our primary focus is on generalizability, we also conduct fine-tuning for both qualitative and quantitative experiments on the ScanNet dataset.
 - Generalized Setting: Testing on novel scenes that were not seen during training.
 - Fine-tune Setting: Fine-tuning on test scenes for 5k steps (~ 20 minutes) before evaluation.

Finetuned Method	GT Depth	ScanNet				
r metanea metaloa	Train / Test	mIoU	acc. / class acc.	PSNR		
S-Ray	111	92.4	98.2/93.8	27.67		
Ours	V /	93.9	99.1 / 98.4	31.70		
S-Ray	1	91.6	97.3 / 92.2	27.31		
Ours	1	93.2	98.2 / 96.8	30.89		

- Analysis of GSNeRF
- Sampling Efficiency (on ScanNet dataset)
 - Thanks to our depth-guided sampling strategy, the number of sampling points (for image rendering) can be reduced during inference, without compromising segmentation performance.
 - 4x rendering speed with better image and segmentation quality.

	N	FPS↑	PSNR↑	mIoU↑
S-Ray	128	0.16	25.13	47.69
Ours	128	0.11	31.49	52.21
Ours	4	0.84	27.80	52.21

Conclusion

- Introducing Generalizable Semantic Neural Radiance Fields (GSNeRF) for simultaneously novel view synthesis and semantic segmentation.
- Propose innovative depth estimation and depth-guided visual rendering, outperforms existing methods on real-world and synthetic datasets.

Thanks for your attention!

Backup Slides

MVS – Cost Volume

• Cost volume is constructed by variance across pixels (of different images)

Algorithm

- Target (Novel) view depth estimation
 - With multi-view depth estimation
 - Projecting all depth predictions into 3D space
 - Reprojecting onto the target camera

Algorithm 1 Estimation of Depth in Target View

Input: Depth predictions of each source view $D_{1:K}$, camera pose of each source view $\xi_{1:K}$, target camera pose ξ_T **Data**: Image size: (H, W), camera pose of the world coordinate ξ_w

Output: Target view depth estimation D_T

- 1: $A \leftarrow empty array()$
- 2: for k = 1, ..., K do
- 3: $g \leftarrow \text{meshgrid}(\mathbf{H}, \mathbf{W})$
- 4: Project g into the coordinate system defined by ξ_k
- 5: Multiply g by the corresponding depth prediction D_k
- 6: $g \leftarrow \mathbf{Transform}(g, \xi_k, \xi_w)$
- 7: Append g to the array A
- 8: end for
- 9: $A \leftarrow \mathbf{Transform}(A, \xi_w, \xi_T)$
- 10: Reproject A onto the ξ_T image plane
- 11: $Z \leftarrow$ the third element (Z-axis) of points A
- 12: $A' \leftarrow$ round the first two elements of A to integer values
- 13: $W \leftarrow$ The first two elements of (A' A)
- 14: Weight and normalize Z using weight W
- 15: Set the depth of target view D_T to Z based on the index of the first two elements of A'
- 16: return Estimated depth of target view D_T
- 17:
- 18: /* Function */
- 19: **Transform**(point, ξ_1, ξ_2):
- 20: **return** transform point from coordinate ξ_1 to ξ_2

Training Loss

- Image rendering loss: L2 loss
- Semantic loss: Cross-entropy loss
- depth loss:
 - supervised:
 - self-supervised:

$$\mathcal{L}_{image} = \sum_{r \in R} \|\mathbf{C}(r) - \hat{\mathbf{C}}(r)\|_{2}^{2}$$
$$\mathcal{L}_{sem} = \sum_{r \in R} (\mathbf{S}(r) \log \hat{\mathbf{S}}(r))$$
$$\mathcal{L}_{D} = \frac{1}{K} (\sum_{k=1}^{K} \|D_{k} - \hat{D}_{k}\|_{s1})$$
$$\mathcal{L}_{ssl} = \lambda_{1} \mathcal{L}_{RC} + \lambda_{2} \mathcal{L}_{SSIM} + \lambda_{3} \mathcal{L}_{Smooth}$$

ref: <u>RCMVSNet</u>

With GT depth supervision:
$$\mathcal{L}=\mathcal{L}_{image}+\mathcal{L}_D+\lambda\mathcal{L}_{sem}$$

Without GT depth supervision: $\mathcal{L}=\mathcal{L}_{image}+\mathcal{L}_{ssl}+\lambda\mathcal{L}_{sem}_{^{26}}$

Metrics

• PSNR:
$$PSNR = 10 \cdot \log_{10}\left(\frac{MAX_I^2}{MSE}\right) = 20 \cdot \log_{10}\left(\frac{MAX_I}{\sqrt{MSE}}\right)$$

• SSIM:
$$ext{SSIM}(\mathbf{x},\mathbf{y}) = rac{(2\mu_x\mu_y + C_1)(2\sigma_{xy} + C_2)}{(\mu_x^2 + \mu_y^2 + C_1)(\sigma_x^2 + \sigma_y^2 + C_2)}$$

• LPIPS:
$$d(x, x_0) = \sum_l \frac{1}{H_l W_l} \sum_{h, w} ||w_l \odot (\hat{y}_{hw}^l - \hat{y}_{0hw}^l)||_2^2$$