DeCoTR: Enhancing Depth Completion with 2D and 3D Attentions

Yunxiao Shi, Manish Kumar Singh, Hong (Herbert) Cai and Fatih Porikli

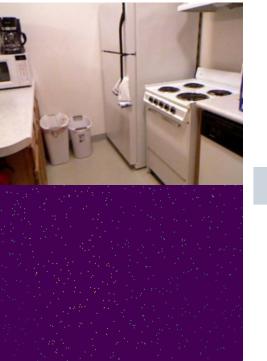
Qualcomm AI Research*

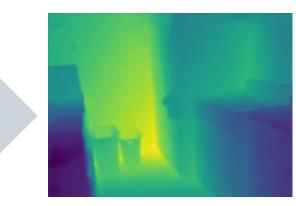
Image-guided depth completion

Sparse depth measurements + aligned image -> dense depth map

Aligned RGB image

Sparse depth measurements (captured by Kinect)



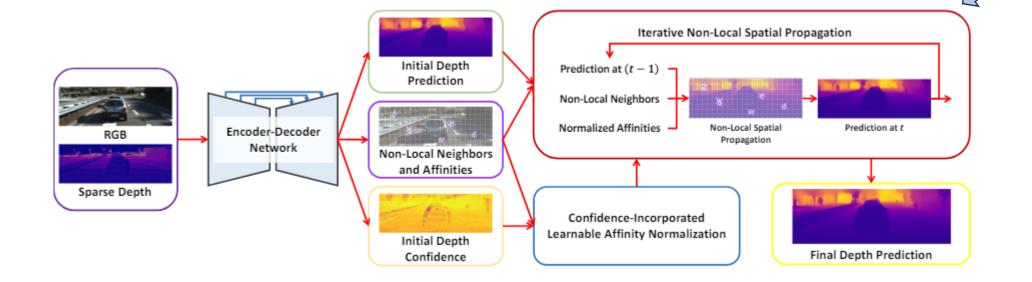


Completed dense depth

Image-guided depth completion

Existing works rely on iterative spatial propagations as refinement

No 3D Geometry! Edge Unfriendly!

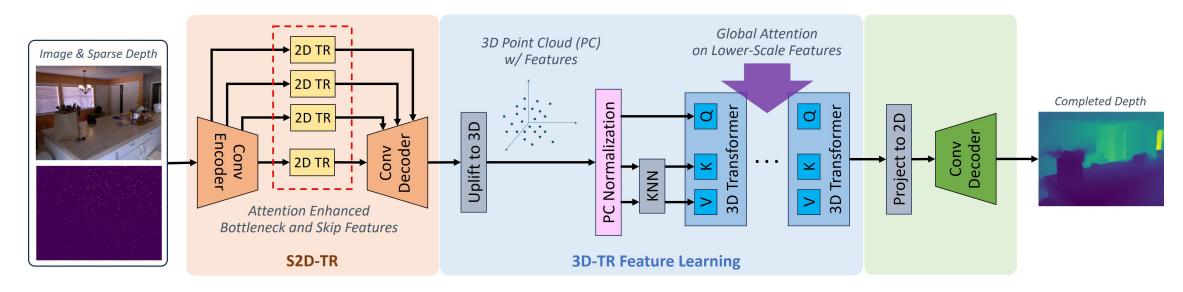


Park, Jinsun, et al. "Non-local spatial propagation network for depth completion.", ECCV 2020.

Our Method: DeCoTR

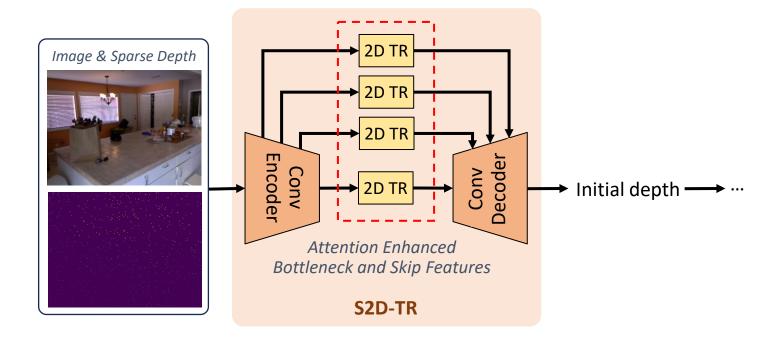
Fully transformer-based architecture

- No spatial propagation
- Efficient 2D attention to improve initial completed depth
- Powerful 3D point transformer as refinement baking in 3D Geometry



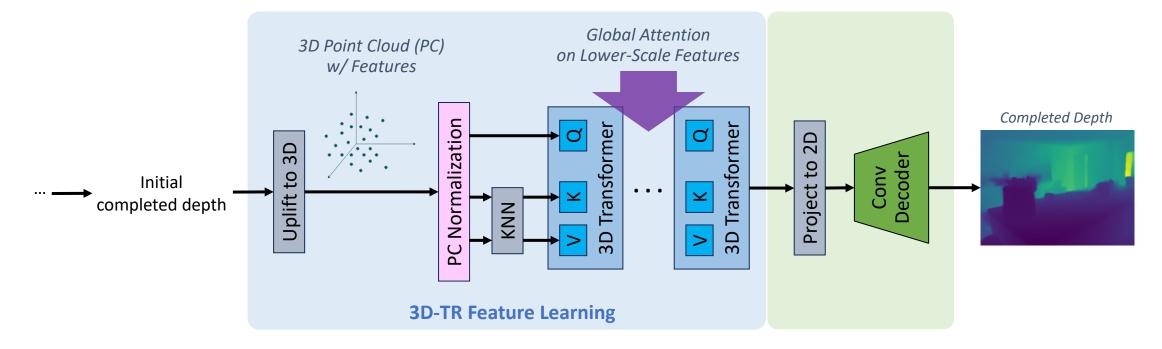
Efficient 2D attention

- Self-attention on down-sampled (via DS Conv) image features
- Makes computing self-attention tractable -> better initial depth



Feature Cross-Attention in 3D

- Local vector cross-attention on uplifted point features
- Global dot-product attention on features of last-encoding stage
- Effectively captures 3D geometry in learning



Evaluation

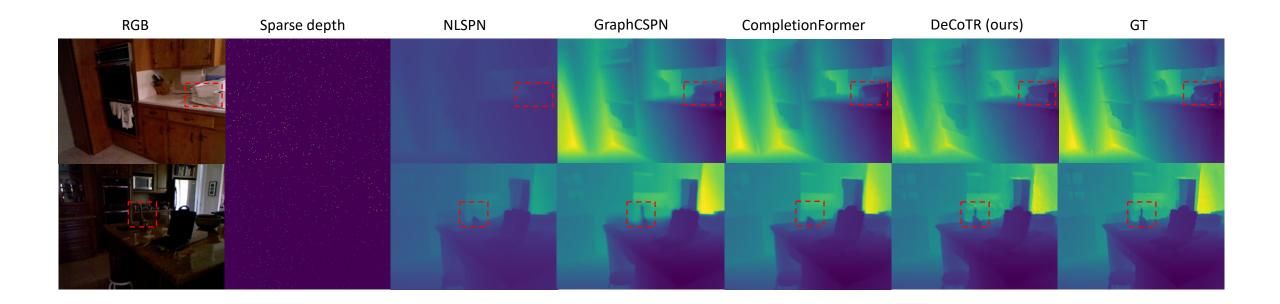
State-of-the-Art results on NYU Depth v2 and KITTI

Method	$\text{RMSE} \downarrow$	Abs Rel \downarrow	$\delta < 1.25 \uparrow$	$\delta < 1.25^2 \uparrow$	$\delta < 1.25^3 \uparrow$	Method	$RMSE\downarrow$	$MAE\downarrow$	$iRMSE\downarrow$	$iMAE\downarrow$
S2D [27]	0.204	0.043	97.8	99.6	99.9	CSPN [4]	1019.64	279.46	2.93	1.15
DeepLiDAR [31]	0.115	0.022	99.3	99.9	100.0	TWISE [19]	840.20	195.58	2.08	0.82
CSPN [4]	0.117	0.016	99.2	99.9	100.0	ACMNet [47]	744.91	206.09	2.08	0.90
DepthNormal [41]	0.112	0.018	99.5	99.9	100.0	GuideNet [37]	736.24	218.83	2.25	0.99
ACMNet [47]	0.105	0.015	99.4	99.9	100.0	NLSPN [29]	741.68	199.59	1.99	0.84
GuideNet [37]	0.101	0.015	99.5	99.9	100.0					
TWISE [19]	0.097	0.013	99.6	99.9	100.0	PENet [17]	730.08	210.55	2.17	0.94
NLSPN [29]	0.092	0.012	99.6	99.9	100.0	GuideFormer [32]	721.48	207.76	2.14	0.97
RigNet [42]	0.090	0.013	99.6	99.9	100.0	RigNet [42]	712.66	203.25	2.08	0.90
DySPN [24]	0.090	0.012	99.6	99.9	100.0	DySPN [24]	709.12	192.71	1.88	0.82
CompletionFormer [45]	0.090	0.012	-	-	-	CompletionFormer [45]	708.87	203.45	2.01	0.88
PRNet [23]	0.104	0.014	99.4	99.9	100.0	PRNet [23]	867.12	204.68	2.17	0.85
CostDCNet [20]	0.096	0.013	99.5	99.9	100.0	FuseNet [3]	752.88	221.19	2.34	1.14
PointFusion [18]	0.090	0.014	99.6	99.9	100.0	PointFusion [18]	741.9	201.10	1.97	0.85
GraphCSPN [26]	0.090	0.012	99.6	99.9	100.0		738.41	199.31		
PointDC [44]	0.089	0.012	99.6	99.9	100.0	GraphCSPN [26]			1.96	$\frac{0.84}{0.87}$
DeCoTR (ours)	0.087	0.012	99.6	99.9	100.0	PointDC [44]	736.07	201.87	1.97	0.87
DeCoTR w/ GA (ours)	0.086	0.012	99.6	99.9	100.0	DeCoTR (ours)	717.07	<u>195.30</u>	1.92	0.84

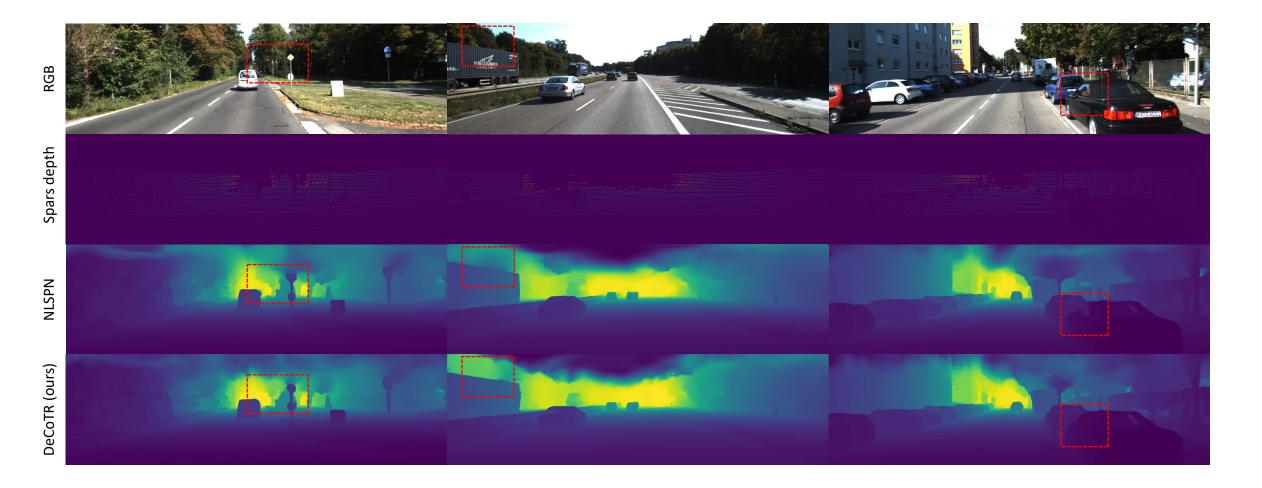
On NYUDv2

On KITTI

Visualization – NYUDv2

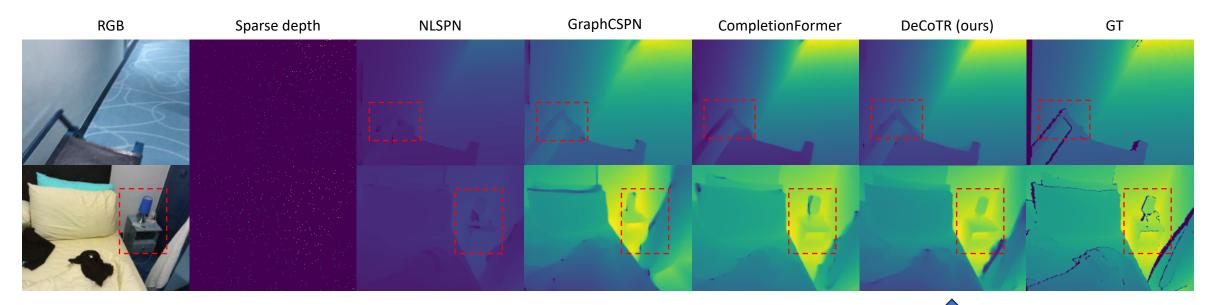


Visualization - KITTI



Cross-domain zero-shot inference

State-of-the-Art zero-shot inference performance on ScanNet-v2 and DDAD



Method	$\text{RMSE}\downarrow$	$\delta < 1.25 \uparrow$	Method	$RMSE\downarrow$	$MAE\downarrow$	
NLSPN [29] GraphCSPN [26] CompletionFormer [45]	0.198 0.197 0.194	97.3 97.3 97.3	NLSPN [29] CompletionFormer [45]	701.9 889.3	309.6 400.1	
DeCoTR (ours)	0.188	97.6	DeCoTR (ours)	399.2	263.1	

Visualization on ScanNet-v2

On ScanNet-v2

On DDAD

*Qualcomm AI Research is an initiative of Qualcomm Technologies, Inc.

Conclusion

- Exploiting 3D geometry leveraging attention is an effective way to improve imageguided depth completion.
- Our method, DeCoTR, achieves SotA results in both indoor and outdoor scenes.
- Superior zero-shot inference performance on unseen datasets is also observed.