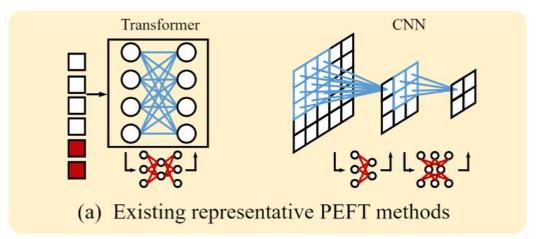
Gradient-based Parameter Selection for Efficient Fine-Tuning

Zhi Zhang^{1,2}*, Qizhe Zhang²*, Zijun Gao², Renrui Zhang^{3,4}, Ekaterina Shutova¹, Shiji Zhou⁵, Shanghang Zhang^{2†} ¹ILLC, University of Amsterdam, ²National Key Laboratory for Multimedia Information Processing, School of Computer Science, Peking University, ³MMLAB, CUHK, ⁴Shanghai AI Laboratory ⁵Department of Automation, Tsinghua University, {z.zhang, e.shutova}@uva.nl, {theia, shanghang}@pku.edu.cn

Parameter-efficient Fine-tuning (PEFT)

• Challenging

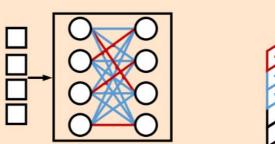

Given the increasing size of the pre-trained models, fine-tuning all the parameters in the model is memory-intensive and data-inefficient, when fine-tuining multiple downstream tasks.

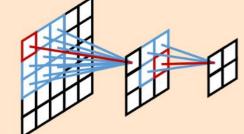
• PEFT

Aims to fine-tune a minimal number of parameters to fit downstream tasks while keeps most of the parameters frozen.

Existing Methods and Limitations

• Current typical methods Adapter, LoRA, VPT.


Limitation


- Introducing additional learnable parameters into the backbone.
 - Disrupting the original architecture.
 - Increasing computational costs during training and/or inference stages.
- Lacking generalizability across various model architectures.

Our method -- Overview

Overview:

- Selecte parameters from the original model
- Finetune the selected parameters and keep the remaining parameters fixed.

(b) Gradient-based Parameter Selection (Ours)

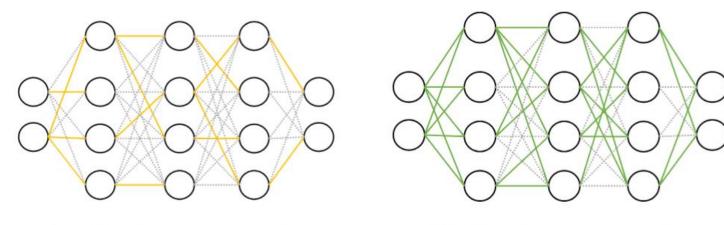
Method				No extra Train param.	No extra Infer params.	Task Adaptive
Full [43]	70.36	100	1	1	1	×
Linear [43]	58.48	0.08	1	1	1	×
Bias [92]	67.54	0.20	1	1	1	×
Adapter [36]	60.04	0.35	×	X	×	×
VPT [43]	73.53	0.76	×	×	×	×
LoRA [38]	75.16	0.90	×	×	1	×
SSF [58]	76.77	0.32	×	×	1	×
GPS (ours)	78.64	0.36	1	1	1	1

• Comparison:

How to select parameters: **Two aspects**

• Importance for downstream tasks

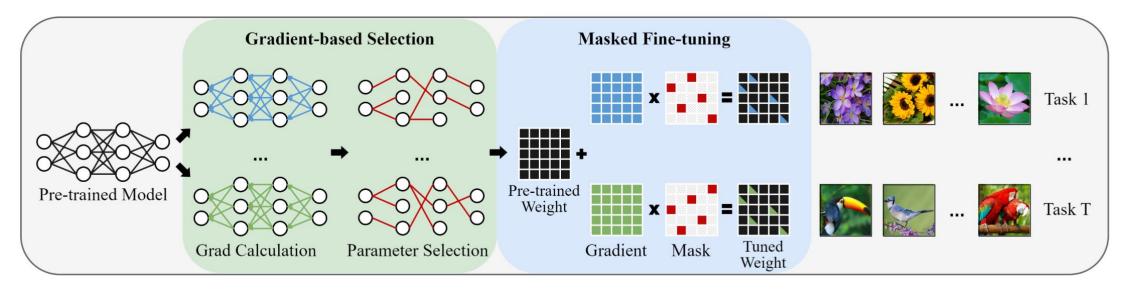
Gredient value: parameters with the largest gradient value indicate the fastest changes in the loss function along the gradient direction.


• Involving all neurons

Every neuron in the network should be involved, as it can potentially adjust all neurons' states to better fit a task during finetuing stage.

How to select parameters: Combination

Combination:


For certain task, we first calculate the gradient for all model parameters. Then, for each neuron in the network, we select the top-K connections (parameters) with the highest gradient value (modulus) among all input connections to that neuron.

(a) One input connection

(b) Two input connections

Gradient-based Parameter (GPS) Selection for PEFT

Overview

- Parameter selection
- Masked fine-tuning

Experiments--Image Classification (FGVC)

Dataset	CUB -2011	NA- Brids	Oxford Flowers	Stan. Dogs	Stan. Cars	Mean Acc.	Params. (%)
Full [43]	87.3	82.7	98.8	89.4	84.5	88.54	100.00
Linear [43]	85.3	75.9	97.9	86.2	51.3	79.32	0.21
Bias [92]	88.4	84.2	98.8	91.2	79.4	88.40	0.33
Adapter [36]	87.1	84.3	98.5	89.8	68.6	85.66	0.48
LoRA [38]	85.6	79.8	98.9	87.6	72.0	84.78	0.90
VPT-Shallow [43]	86.7	78.8	98.4	90.7	68.7	84.62	0.29
VPT-Deep [43]	88.5	84.2	99.0	90.2	83.6	89.11	0.99
SSF [58]	89.5	85.7	99.6	89.6	89.2	90.72	0.45
SPT-Adapter [30]	89.1	83.3	99.2	91.1	86.2	89.78	0.47
SPT-LoRA [30]	88.6	83.4	99.5	<u>91.4</u>	87.3	90.04	0.60
GPS (Ours)	89.9	86.7	99.7	92.2	90.4	91.78	0.77

Table 2. Performance comparisons on FGVC with ViT-B/16 models pre-trained on ImageNet-21K.

Experiments--Image Classification (VTAB)

$\overline{\}$				Natural					Speci	alized					Struc	tured				VI	TAB
Dataset Method	CIFAR-100	Caltech101	DTD	Flowers102	Pets	NHNS	Sun397	Patch Camelyon	EuroSAT	Resisc45	Retinopathy	Clevr/count	Clevr/distance	DMLab	KITTI/distance	dSprites/loc	dSprites/ori	SmallNORB/azi	SmallNORB/ele	Mean Acc.	Mean Params. (%)
Full [43]	68.9	87.7	64.3	97.2	86.9	87.4	38.8	79.7	95.7	84.2	73.9	56.3	58.6	41.7	65.5	57.5	46.7	25.7	29.1	65.57	100.00
Linear [43]	63.4	85.0	64.3	97.0	86.3	36.6	51.0	78.5	87.5	68.6	74.0	34.3	30.6	33.2	55.4	12.5	20.0	9.6	19.2	53.00	0.05
Bias [92]	72.8	87.0	59.2	97.5	85.3	59.9	51.4	78.7	91.6	72.9	69.8	61.5	55.6	32.4	55.9	66.6	40.0	15.7	25.1	62.05	0.16
Adapter [36]	74.1	86.1	63.2	97.7	87.0	34.6	50.8	76.3	88.0	73.1	70.5	45.7	37.4	31.2	53.2	30.3	25.4	13.8	22.1	55.82	0.31
LoRA [38]	68.1	91.4	69.8	99.0	90.5	86.4	53.1	85.1	95.8	84.7	74.2	<u>83.0</u>	66.9	50.4	81.4	80.2	46.6	32.2	41.1	72.63	0.90
VPT-Shallow [43]	77.7	86.9	62.6	97.5	87.3	74.5	51.2	78.2	92.0	75.6	72.9	50.5	58.6	40.5	67.1	68.7	36.1	20.2	34.1	64.85	0.13
VPT-Deep [43]	<u>78.8</u>	90.8	65.8	98.0	88.3	78.1	49.6	81.8	<u>96.1</u>	83.4	68.4	68.5	60.0	46.5	72.8	73.6	47.9	32.9	37.8	69.43	0.70
SSF [58]	69.0	92.6	75.1	99.4	91.8	<u>90.2</u>	52.9	87.4	95.9	87.4 85.5	75.5	75.9	62.3	<u>53.3</u>	80.6	77.3	<u>54.9</u>	29.5	37.9	73.10	0.28
SPT-ADAPTER [30]	72.9	93.2	72.5	<u>99.3</u>	91.4	88.8	55.8	86.2	<u>96.1</u>		75.5	<u>83.0</u>	68.0	51.9	81.2	51.9	31.7	41.2	61.4	73.03	0.44
SPT-LoRA [30] GPS (Ours)	73.5	<u>93.3</u> 94.2	72.5 75.8	<u>99.3</u> 99.4	91.5 <u>91.7</u>	87.9 91.6	<u>55.5</u> 52.4	85.7 87.9	96.2 96.2	85.9 <u>86.5</u>	<u>75.9</u> 76.5	84.4 79.9	<u>67.6</u> 62.6	52.5 55.0	<u>82.0</u> 82.4	<u>81.0</u> 84.0	51.1 55.4	30.2 29.7	41.3 <u>46.1</u>	74.07 75.18	0.63

Table 3. Performance comparisons on VTAB-1k with ViT-B/16 models pre-trained on ImageNet-21K.

Experiments--Semantic Segmentation (Polyp)

Method	mDice (†)	mIoU (†)	Params. (M)	
Full [43]	71.1	55.7	93.8	
Linear [43] Bias [92]	71.6 86.5	46.6 69.1	4.06 4.16	
Adapter [6] SSF [58]	84.8 87.3	66.7 71.7	4.12 4.26	
GPS (Ours)	88.1	72.5	4.22	

RGB Image Full Adapter SSF GPS (Ours) Ground Truth

Experiments--Different Architectures

Dataset Method	CUB-200 -2011	NABrids	Oxford Flowers	Stanford Dogs	Stanford Cars	Mean Acc.	Mean Params. (M)	Mean Params. (%)
ViT-B/16 + Full	87.3	82.7	98.8	89.4	84.5	88.54	85.98	100.00
ViT-B/16 + Linear	85.3	75.9	97.9	86.2	51.3	79.32	0.18	0.21
ViT-B/16 + SSF	89.5	85.7	99.6	89.6	89.2	90.72	0.39	0.45
ViT-B/16 + GPS (Ours)	89.9	86.7	99.7	92.2	90.4	91.78	0.66	0.77
Swin-B + Full	90.7	89.8	99.5	88.9	93.2	92.42	86.98	100.00
Swin-B + Linear	90.6	86.8	99.2	88.3	74.6	87.90	0.24	0.28
Swin-B + SSF	90.5	88.4	99.7	88.7	90.4	91.54	0.49	0.56
Swin-B + GPS (Ours)	90.8	88.9	99.7	92.7	90.7	92.56	0.83	0.95
ConvNeXt-B + Full	91.2	90.4	99.6	89.9	94.1	93.04	87.81	100.00
ConvNeXt-B + Linear	90.6	86.9	99.3	89.7	73.5	88.00	0.24	0.28
ConvNeXt-B + SSF	90.8	89.0	99.7	90.4	92.5	92.48	0.50	0.56
ConvNeXt-B + GPS (Ours)	91.0	89.6	99.7	93.7	92.6	93.32	0.79	0.90

Table 9. Performance comparisons on FGVC benchmark with different model architectures.

Thank you for your attention!!!