

Unsupervised 3D Structure Inference from Category-Specific Image Collections

Weikang Wang Dongliang Cao Florian Bernard University of Bonn

• 3D structure represented by keypoints (possibly with linking edges) are useful for many downstream tasks, such as:

Graph matching (from [1])

3D Shape animation (from [2])

Control 3D generation (from [3])

Nurlanov, Z., Schmidt, F. R., & Bernard, F. Universe points representation learning for partial multi-graph matching. AAAI 2023
 Wu, S., Li, R., Jakab, T., Rupprecht, C., & Vedaldi, A. Magicpony: Learning articulated 3d animals in the wild. CVPR 2023
 Jakab, T., Tucker, R., Makadia, A., Wu, J., Snavely, N., & Kanazawa, A. Keypointdeformer: Unsupervised 3d keypoint discovery for shape control. CVPR 2023

• However, inferring 3D keypoints from images is hard, and previous unsupervised works use various priors to achieve this:

Multiple views [1, 2, 3]

2D keypoints annotations (various SfM methods [4,5], [6])

Geometry constraints (such as symmetry [7], skeleton [8])

[1] Chen, B., Abbeel, P., & Pathak, D. Unsupervised learning of visual 3d keypoints for control. ICML 2021
 [2] Honari, S., & Fua, P. Unsupervised 3d keypoint estimation with multi-view geometry. Arxiv 2022

[3] Suwajanakorn, S., Snavely, N., Tompson, J. J., & Norouzi, M. (2018). Discovery of latent 3d keypoints via end-to-end geometric reasoning. NeurIPS 2018
 [4] Kong, C., & Lucey, S. Deep non-rigid structure from motion. CVPR 2019

[5] Novotny, D., Ravi, N., Graham, B., Neverova, N., & Vedaldi, A. C3dpo: Canonical 3d pose networks for non-rigid structure from motion. ICCV 2019
[6] Reddy, N. D., Vo, M., & Narasimhan, S. G. Occlusion-net: 2d/3d occluded keypoint localization using graph networks. CVPR 2019
[7] Wu, S., Rupprecht, C., & Vedaldi, A. Unsupervised learning of probably symmetric deformable 3d objects from images in the wild. CVPR 2020
[8] He, X., Bharaj, G., Ferman, D., Rhodin, H., & Garrido, P. Few-shot geometry-aware keypoint localization. CVPR 2023

 In this paper, we inference 3D keypoints directly from a categoryspecific image collection (no multiple views) without any priors.

• The core idea is: *Different instances from a same category share a similar sparse 3D structure with restricted deformations*.

• Inputs: a set of category-specific image collections

Sample an image *I* and feed it into the encoder to get *K* heatmaps $H_i \in [0,1]^{H \times W}$, $i = 1, \dots, K$, then get the 2D keypoint matrix $P^{2D} \in \mathbb{R}^{K \times 3}$ via:

$$P_i^{2D} = \sum_p \frac{H_i(p)}{\sum_{p'} H_i(p')} p, \qquad i = 1, \cdots, K, \qquad p, p' \in [-1, 1] \times [-1, 1]$$

Meanwhile, global trainable parameters mean shape $M \in \mathbb{R}^{K \times 3}$, and a set of basis $B \in \mathbb{R}^{n \times 3K}$ are learned. Together with basis coefficient α , we get the 3D keypoints at canonical pose:

 $P_{\text{canonical}}^{3D} = M + \alpha B$

Then P^{3D} is got by apply rigid body transformation (*R*, *T*) and scaling factor *S* on $P^{3D}_{canonical}$

For each pair of 2D keypoints, P_i^{2D} and P_j^{2D} , an edge map $S_{ij} \in \mathbb{R}^{H \times W}$ is defined on normalized pixel coordinates p:

$$S_{ij} = exp\left(-\frac{d_{ij}(p)}{\sigma}\right), \qquad 1 \le i, j \le K$$

where $d_{ij}(p)$ is the distance of pixel p to line segment connecting P_i^{2D} and P_j^{2D} , and $\sigma \in \mathbb{R}$ controls the thickness of the edge. The final edge map $S \in \mathbb{R}^{H \times W}$ summarizing S_{ij} for paired keypoints is:

$$S(p) = \max_{1 \le i,j \le K} \omega_{ij} S_{ij}(p)$$

- **Reconstruction loss:** $\mathcal{L}_{rec} = ||F(D(S \odot I_{masked})) F(I)||$
- **Projection loss:** $\mathcal{L}_{\text{proj}} = \| \mathbb{P}^{3D} \Pi \mathbb{P}^{2D} \|$, where $\Pi = [s_1, 0; 0, s_2; 0, 0] \in \mathbb{R}^{3 \times 2}_+$
- **Repulsion loss:** $\mathcal{L}_{rep} = -\sum_{i=1}^{K} \|P_i^{2D} \mathcal{N}_i\| \exp\left(-\frac{\|P_i^{2D} \mathcal{N}_i\|}{h}\right)$, where \mathcal{N}_i is nearest to P_i^{2D}

Method	K=8
DFF [1]	$31.30\%^{*}$
SCOPS (w/o saliency) [6]	$22.11\%^\dagger$
SCOPS (w/saliency) [6]	$15.01\%^\dagger$
Liu et al. [8]	$12.26\%^\dagger$
Huang et al. [5]	$8.4\%^\dagger$
GANSeg [4]	$6.18\%^\dagger$
Thewlis et al. [10]	$31.30\%^*$
Zhang et al. [11]	$40.82\%^{*}$
LatentKeypointGAN [2]	$21.90\%^\dagger$
LatentKeypointGAN-tuned [2]	$5.63\%^\dagger$
Lorenz et al. [9]	$11.41\%^{\ddagger}$
IMM [7]	$8.74\%^{\ddagger}$
AutoLink [3]	5.39%
Ours	5.21%

Tab1. Normalized L_2 error (NME) for 2D keypoints inference of various unsupervised methods on CELEBA WILD datasets for K = 8

Method	K=8	K=16	K=24	K=32
AutoLink [3]	5.39%	4.69%	3.99%	3.77%
Ours	5.21%	3.97%	3.54%	3.48%

Tab2. Normalized L_2 error (NME) of AutoLink and our method for different numbers of keypoints using the CELEBA WILD dataset.

Supervised	Unsupervised		
3DDFA	AutoLink+Unsup3d	AutoLink+MiDaS	Ours
4.94%	11.47%	9.23%	8.48%

Tab3. Normalized L_2 error (NME) of our method, two unsupervised methods (AutoLink + MiDaS and AutoLink + Unsup3d) and one supervised method (3DDFA) for 3D keypoints inference (training on the 300W-LP dataset and testing on the AFLW2000- 3D dataset).

References

Collins, E., Achanta, R., & Susstrunk, S., Deep feature factorization for concept discovery. ECCV 2018
 He, X., Wandt, B., & Rhodin, H., Latentkeypointgan: Controlling GANs via latent keypoints. Arxiv 2021
 He, X., Wandt, B., & Rhodin, H., Autolink: Self-supervised learning of human skeletons and object outlines by linking keypoints. NeurIPS 2022

[4] He, X., Wandt, B., & Rhodin, H., Ganseg: Learning to segment by unsupervised hierarchical image generation. CVPR 2022
 [5] Huang, Z., & Li, Y., Interpretable and accurate fine grained recognition via region grouping. CVPR2020

[6] Hung, W. C., Jampani, V., Liu, S., Molchanov, P., Yang, M. H., & Kautz, J., Scops: Self-supervised co-part segmentation. CVPR 2019
 [7] Jakab, T., Gupta, A., Bilen, H., & Vedaldi, A., Unsupervised learning of object landmarks through conditional image generation. NeurIPS 2018

[8] Liu, S., Zhang, L., Yang, X., Su, H., & Zhu, J., Unsupervised part segmentation through disentangling appearance and shape. CVPR 2021
[9] Lorenz, D., Bereska, L., Milbich, T., & Ommer, B., Unsupervised part-based disentangling of object shape and appearance. CVPR 2019
[10] Thewlis, J., Bilen, H., & Vedaldi, A., Unsupervised learning of object landmarks by factorized spatial embeddings. ICCV 2017
[11] Zhang, Y., Guo, Y., Jin, Y., Luo, Y., He, Z., & Lee, H., Unsupervised discovery of object landmarks as structural representations. CVPR 2018
[12] Zhu, X., Liu, X., Lei, Z., & Li, S. Z., Face Alignment in Full Pose Range: A 3D Total Solution. TPAMI 2017

Thank you for listening!