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* 3D structure represented by keypoints (possibly with linking edges)
are useful for many downstream tasks, such as:
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Graph matching (from [1]) 3D Shape animation (from [2]) Control 3D generation (from [3])

[1] Nurlanov, Z, Schmidt, F. R, & Bernard, F. Universe points representation learning for partial multi-graph matching. AAAI 2023
2] Wu, S, Li, R, Jakab, T., Rupprecht, C., & Vedaldi, A. Magicpony: Learning articulated 3d animals in the wild. CVPR 2023
[3] Jakab, T., Tucker, R, Makadia, A., Wu, J, Snavely, N., & Kanazawa, A. Keypointdeformer: Unsupervised 3d keypoint discovery for shape control. CVPR 2023
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* However, inferring 3D keypoints from images is hard, and
previous unsupervised works use various priors to achieve this:
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Multiple views [1, 2, 3] 2D keypoints annotations Geometry constraints
(various SfM methods [4,5], [6]) (such as symmetry
[7], skeleton [8])

Chen, B, Abbeel, P, & Pathak, D. Unsupervised learning of visual 3d keypoints for control. ICML 2021

Honari, S., & Fua, P. Unsupervised 3d keypoint estimation with multi-view geometry. Arxiv 2022

Suwajanakorn, S., Snavely, N., Tompson, J. J, & Norouzi, M. (2018). Discovery of latent 3d keypoints via end-to-end geometric reasoning. NeurlPS 2018
Kong, C., & Lucey, S. Deep non-rigid structure from motion. CVPR 2019

Novotny, D., Ravi, N., Graham, B., Neverova, N., & Vedaldi, A. C3dpo: Canonical 3d pose networks for non-rigid structure from motion. ICCV 2019
Reddy, N. D.,, Vo, M., & Narasimhan, S. G. Occlusion-net: 2d/3d occluded keypoint localization using graph networks. CVPR 2019

Wu, S., Rupprecht, C., & Vedaldi, A. Unsupervised learning of probably symmetric deformable 3d objects from images in the wild. CVPR 2020
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* |[n this paper, we inference 3D keypoints directly from a category-
specific image collection (no multiple views) without any priors.

Shape
Model

* The core idea Is: Different instances from a same category share a
similar sparse 3D structure with restricted deformations.
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* Inputs: a set of category-specific image collections
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heatmaps

encoder

Sample an image I and feed it into the encoder to get K heatmaps H; € [0,1]%*W i = 1,--- K, then get the 2D

keypoint matrix P22 € RX*3 via:

H;
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global trainable
parameter

encoder

mean shape M

_ - _
REX3 basis B

canonical €

- p3D

P3D = IRKX3

RKXS

RnXSK

Meanwhile, global trainable parameters mean shape M € , and a set of basis B € are learned.

Together with basis coefficient a, we get the 3D keypoints at canonical pose:

p3D

canonical —

=M+ aB

Then P3P is got by apply rigid body transformation (R, T) and scaling factor S on P22 .
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PZD € RKX3 — P

edge map S

For each pair of 2D keypoints, P?P and PjZD, an edge map S;; € RE*W is defined on normalized pixel coordinates p:
d::
Sijzexp<— ”a(p)), 1<ij<K

where d;;(p) is the distance of pixel p to line segment connecting Pl-2D and PjZD, and o € R controls the thickness
of the edge. The final edge map S € RE*W summarizing S;; for paired keypoints is:
S(p) =  max, w;;iS;i(p)
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Reconstruction loss: Liec = ||F(D(S O Imasked)) — F(D|

*  Projection loss: Ly, = , whereIl = [s4,0; 0,s,;0,0] € R3*?

P2 2D
== P;

*  Repulsion loss: Ly, = — Xi—q||P?° — ;|| exp (— ) where JV; is nearest to
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Method K=8 Method K=8 K=16 K=24 K=32

DFF [1] 31.30%* AutoLink [3] 5.39% 4.69% 3.99% 3.77%
SCOPS (w/o saliency) [6] 22.11%"T Ours 521% 397% 3.54% 3.48%
SCOPS (w/saliency) 16] 15'01%T Tab2. Normalized L, error (NME) of AutoLink and our method for
Liu et al. [8] 12.26%T different numbers of keypoints using the CELEBA WILD dataset.
Huang et al. [5] 8.4%

GANSeg [4] 6.18% 1 Supervised Unsupervised
Thewlis et al. [10] 31.30%* 3DDFA AutoLink+Unsup3d  AutoLink+MiDaS  Ours

Zhang et al. [11] 40.82%* 4.94% | 11.47% 9.23% 8.48%

Laten‘[Keyp()jntGAN [2] 21_90%T Tab3. Normalized L, error (NME) of our method, two unsupervised
. _ ) T methods (AutoLink + MiDa$S and AutoLink + Unsup3d) and one

LatentKeyponztGAN tuned 2] 5.637% i supervised method (3DDFA) for 3D keypoints inference (training on

Lorenz et al. [)] 11.41% the 300W-LP dataset and testing on the AFLW2000- 3D dataset).

IMM [7] 874%1: Refergnces o _

AutoLink [3] 5.39% 2] Ho, . wandt, B, & Rnodin, . Laterikeypaintgan- Controling GANS v isent keypoints. Aniy 2021

[3] He, X., Wandt, B., & Rhodin, H., Autolink: Self-supervised learning of human skeletons and object outlines by linking keypoints. NeurlPS

Ours 5.21% 2022

[4] He, X., Wandt, B., & Rhodin, H., Ganseg: Learning to segment by unsupervised hierarchical image generation. CVPR 2022
[5] Huang, Z., & Li, Y., Interpretable and accurate fine grained recognition via region grouping. CVPR2020

H H H P [6] Hung, W. C., Jampani, V., Liu, S., Molchanov, P., Yang, M. H., & Kautz, J., Scops: Self-supervised co-part segmentation. CVPR 2019
Tabl Nor.mallzed LZ error (NME) fOF 2D keypomts mference Of various [7] Jakab, T., Gupta, A., Bilen, H., & Vedaldi, A., Unsupervised learning of object landmarks through conditional image generation. NeurlPS
unsupervised methods on CELEBA WILD datasets for K = 8 2018

[8] Liu, S., Zhang, L., Yang, X., Su, H., & Zhu, J., Unsupervised part segmentation through disentangling appearance and shape. CVPR 2021

9] Lorenz, D., Bereska, L., Milbich, T., & Ommer, B., Unsupervised part-based disentangling of object shape and appearance. CVPR 2019

0] Thewlis, J., Bilen, H., & Vedaldi, A., Unsupervised learning of object landmarks by factorized spatial embeddings. ICCV 2017

1] Zhang, Y., Guo, Y., Jin, Y., Luo, Y., He, Z.,, & Lee, H., Unsupervised discovery of object landmarks as structural representations. CVPR 2018
2] Zhu, X, Liu, X,, Lei, Z.,, & Li, S. Z., Face Alignment in Full Pose Range: A 3D Total Solution. TPAMI 2017
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