Poster Session THU-AM-192

CycleINR: Cycle Implicit Neural Representation for Arbitrary-Scale Volumetric Super-Resolution of Medical Data

<u>Wei Fang</u>^{1,2}, Yuxing Tang¹, Heng Guo^{1,2}, Mingze Yuan¹, Tony C. W. Mok^{1,2}, Ke Yan^{1,2}, Jiawen Yao^{1,2}, Xin Chen³, Zaiyi Liu³, Le Lu¹, Ling Zhang¹, Minfeng Xu^{1,2} ¹DAMO Academy, Alibaba Group, ²Hupan Lab, ³Guangdong Province People's Hospital

CycleINR Quick View

A super-resolution model for Medical data, such as CT and MRI.

Flexible super-resolution ratio.

Mitigate over-smoothing problem by introducing cycle-consistent loss.

Extensive experiments on image generation and downstream task.

Original 5mm-spacing image

CycleINR Predicted, 1mm-spacing image Ground Truth, 1mm-spacing image

Background and Motivation

- Anisotropic resolution in volumetric medical data
- Z spacing is worse than X and Y axis
- Hindering optimal viewing experiences
- Impeding the use of downstream analysis algorithms

One 5 mm spacing image sample

Two main challenges

Non-adaptive super-resolution ratios

- Most previous methods can only handle one specific super-resolution ratio for one model.
- Fractional super-resolution ratio like 5/3 will make this problem more complex.
- The over-smoothing problem
 - The newly generated slices often exhibit over-smoothing for previous deep learning methods.
 - This will create a noticeable slice-wise inconsistency issue in volumetric scenarios, which is especially obvious when scrolling through the slices.

Our CycleINR Solution

- INR Model for Flexible Arbitrary-scale Super-resolution
 - INR model uses a neural network to represent a image. The network's input is the coordinate and the output is the corresponding pixel value.

$$I = f_{\theta}(\mathbf{x})$$

- Thus LR and HR images are sampled data of one continual signal at different sampling rates.
- Once we get the trained INR network, we achieve an arbitrary-scale superresolution model.
- Cycle-consistent Loss for Overcoming Over-smoothing
 - Utilizing the cycle-consistency between generated slices and the original slices under the INR setting.

Cycle-consistent loss

Steps for constructing cycle-consistent loss:

- Use signal X to fit a continuous Implicit Neural Representation (INR) function
- New points (Y) are sampled from this function to create a new INR function.
- The signal $\widehat{\mathbf{X}}$ is then sampled from the new function at the same positions as \mathbf{X} .
- Constructing cycle-consistent loss by assessing the similarity between \widehat{X} and X.

Framework Overview

The INR model includes:

- CNN encoder
- Attention-enhanced Latent Code Grid Sampling (ALCGS)
- Fully connected decoder

Axial View Results

- Better details in newly generated slices
- Better consistency
 between slices

010

Coronal and Sagittal Views

- Better bone structure reconstruction quality
- Less Jagged artefacts
- Mitigated horizontal lines due to improved slice-wise noise level consistency

Quantitative Results on CT

- Significant improvements on LPIPS
- Suboptimal PSNR and SSIM does not necessarily signify a negative outcome since these two metric favor smoothness

Scale	Method	PSNR(↑)	SSIM(†)	$LPIPS_alex(\downarrow)$	$LPIPS_vgg(\downarrow)$	LPIPS_squeeze(\downarrow)	$SNLI(\downarrow)$
x2	Cubic	39.5039	0.9705	0.0148	0.0639	0.0161	0.5318
	Trilinear	40.6750	0.9757	0.0201	0.0618	0.0189	0.8450
	TVSRN [52]	43.6167	0.9820	0.0311	0.0824	0.0310	1.4307
	ArSSR [48]	42.6713	0.9799	0.0370	0.0913	0.0357	1.5738
	SAINT [32]	44.3977	0.9833	0.0361	0.0867	0.0354	1.6724
	CycleINR (Ours)	43.0137	0.9805	0.0201	0.0625	0.0206	0.3527
x3	Cubic	35.0140	0.9393	0.0306	0.1084	0.0292	0.5322
	Trilinear	36.5867	0.9515	0.0328	0.0973	0.0293	0.7422
	TVSRN [52]	40.4857	0.9696	0.0607	0.1419	0.0583	1.4389
	ArSSR [48]	39.3398	0.9659	0.0443	0.1135	0.0413	1.3026
	SAINT [32]	40.8705	0.9711	0.0625	0.1404	0.0599	1.7535
	CycleINR (Ours)	39.2748	0.9644	0.0293	0.0902	0.0280	0.6674
x5	Cubic	31.0470	0.8896	0.0562	0.1627	0.0480	0.5336
	Trilinear	32.6606	0.9106	0.0525	0.1413	0.0433	0.6682
	TVSRN [52]	36.8459	0.9503	0.0927	0.1989	0.0862	1.3593
	ArSSR [48]	35.1960	0.9394	0.0611	0.1485	0.0528	1.1714
	SAINT [32]	36.9940	0.9519	0.0996	0.2044	0.0951	1.6996
	CycleINR (Ours)	35.0022	0.9354	0.0464	0.1289	0.0399	0.6050

Quantitative Results on MR

Visualization results before and after super-resolution.

Method	$PSNR(\uparrow)$	SSIM(↑)	LPIPS_ $a(\downarrow)$	LPIPS_ $v(\downarrow)$	LPIPS_ $s(\downarrow)$	$SNLI(\downarrow)$	$FID(\downarrow)$
Cubic	29.097	0.854	0.0202	0.152	0.0461	0.141	25.884
Trilinear	30.670	0.879	0.0196	0.133	0.0435	0.126	26.712
TVSRN [51]	30.710	0.882	0.0468	0.253	0.0969	0.140	21.006
ArSSR [47]	30.564	0.898	0.0323	0.148	0.0608	0.134	15.539
SAINT [31]	32.120	0.911	0.0536	0.177	0.0902	0.263	17.652
CycleINR	31.017	0.902	0.0184	0.123	0.0424	0.120	15.449

Downstream Task

Performed on MSD liver tumor dataset

Comparison of segmentation across different methods with regard to the segmentation on the original HR data '_L' and '_T' represent the liver and tumor respectively

Scale Method	DSC_L↑	NSD_L↑	DSC_T↑	NSD_T↑
Cubic	0.9868	0.9568	0.9069	0.8632
Trilinear	<u>0.9892</u>	<u>0.9622</u>	0.9069	0.8575
TVSRN [51]	0.9886	0.9514	0.8552	0.8065
ArSSR [47]	0.9856	0.9459	0.8516	0.7952
SAINT [31]	0.9884	0.9540	0.8476	0.7904
CycleINR	0.9911	0.9648	0.8730	0.8226
Cubic	0.9625	0.7862	0.7621	0.6891
Trilinear	0.9783	0.9037	0.7858	0.7083
TVSRN [51]	0.9783	0.9105	0.7672	0.6892
ArSSR [47]	0.9777	0.9056	0.7811	0.6988
SAINT [31]	0.9820	0.9250	0.8042	0.7338
CycleINR	0.9832	0.9294	0.8087	0.7381
Cubic	0.8678	0.4475	0.5644	0.4386
Trilinear	0.9487	0.6873	0.6755	0.5385
5 TVSRN [51]	0.9481	0.8228	0.6440	0.5431
ArSSR [47]	0.9589	0.7907	0.6582	0.5297
SAINT [31]	0.9619	0.8561	0.6006	0.5050
CycleINR	0.9620	0.8566	0.6881	0.5640

Arbitrary-scale SR Results

Super-resolution ratio getting larger

Conclusion

- Introduced cycle-consistent loss mitigates over-smoothing
- Enables efficient high-resolution image generation without specific training for super-resolution ratios
- Offer enhanced visual quality, and robust downstream analysis

