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CycleINR Quick View

Original 5mm-spacing image
CycleINR Predicted,

1mm-spacing image

Ground Truth,

1mm-spacing image

A super-resolution model for Medical 

data, such as CT and  MRI.

Flexible super-resolution ratio.

Mitigate over-smoothing problem by 

introducing cycle-consistent loss.

Extensive experiments on image 

generation and downstream task.
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Background and Motivation

• Anisotropic resolution in volumetric medical data

• Z spacing is worse than X and Y axis

• Hindering optimal viewing experiences

• Impeding the use of downstream analysis algorithms

One 5 mm spacing image sample 
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Two main challenges

• Non-adaptive super-resolution ratios

• Most previous methods can only handle one specific super-resolution ratio for 
one model.

• Fractional super-resolution ratio like 5/3 will make this problem more complex.

• The over-smoothing problem

• The newly generated slices often exhibit over-smoothing for previous deep 
learning methods.

• This will create a noticeable slice-wise inconsistency issue in volumetric 
scenarios, which is especially obvious when scrolling through the slices.
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Our CycleINR Solution

• INR Model for Flexible Arbitrary-scale Super-resolution
• INR model uses a neural network to represent a image. The network’s 

input is the coordinate and the output is the corresponding pixel value. 

• Thus LR and HR images are sampled data of one continual signal at 
different sampling rates.

• Once we get the trained INR network, we achieve an arbitrary-scale super-
resolution model.

• Cycle-consistent Loss for Overcoming Over-smoothing
• Utilizing the cycle-consistency between generated slices and the original 

slices under the INR setting.
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Cycle-consistent loss

• Use signal 𝐗 to fit a continuous Implicit 

Neural Representation (INR) function 

• New points (𝐘) are sampled from this 

function to create a new INR function.

• The signal 𝐗 is then sampled from the 

new function at the same positions as 𝐗. 

• Constructing cycle-consistent loss by 

assessing the similarity between 𝐗 and 𝐗.

Steps for constructing cycle-consistent loss:
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The concept of cycle-consistent loss



Framework Overview

The INR model includes:

• CNN encoder

• Attention-enhanced Latent

Code Grid Sampling (ALCGS)

• Fully connected decoder
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Axial View Results

• Better details 

in newly generated slices

• Better consistency

between slices
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Coronal and Sagittal Views

• Better bone structure reconstruction quality

• Less Jagged artefacts

• Mitigated horizontal lines due to improved slice-wise noise level consistency  
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Quantitative Results on CT
• Significant improvements on LPIPS

• Suboptimal PSNR and SSIM does not necessarily signify a negative outcome since these two

metric favor smoothness

9



Quantitative Results on MR

Visualization results before and after super-resolution.
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Downstream Task

Performed on MSD liver tumor dataset 

Comparison of segmentation across different methods 

with regard to the segmentation on the original HR data

‘_L’ and ‘_T’ represent the liver and tumor respectively
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Arbitrary-scale SR Results
Super-resolution ratio getting larger
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Conclusion

• Introduced cycle-consistent loss mitigates over-smoothing

• Enables efficient high-resolution image generation without 
specific training for super-resolution ratios

• Offer enhanced visual quality, and robust downstream analysis
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