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») 1 Background

Task: Image-goal visual navigation
ﬁ ™ 1'? |

Task requirements: The agent navigates

to the goal area specified by an image

with the fewest number of steps

t: 001, r: —=0.00 ,dist: 5.93, stuck: 01 a:
node : 001 curr: O

Navigation Example

Target-driven visual navigation in indoor scenes using deep reinforcement learning, ICRA 2017



) 2 Related Works

Basic approach:

« Build scene memory for navigation decision-making
« Use IL or RL to train agents

> Existing method 1: SMT

Memory implementation: stacking navigation history

information

Drawback: The storage and computational complexity are

high : SR

> Existing method 2: VGM z-,_,!.i.,.:me;ev.« .
» TN | B

Memory implementation: Employ topology maps to selectively store i 5§ 9
landmark features
Drawbacks: (1) Too many redundant nodes— too much noise a,;‘,.

(2) Lack of scene-level features — Inferior decision-making



2) 2 Related Works /.’(

Common shortcomings of existing methods
Typically test only on single-goal datasets — The role

of memory mechanisms is hard to be adequately .

evaluated
To Goal 2 To Goal 3

Our opinion: Multi-goal navigation tasks are s Map nodes with

0——>1 attention scores
_— Map edge
™~

more suitable, as scene memory should help

Goals

re\ Agent position

the agent quickly return to the explored area

To Goal 1

Examples of multi-goal navigation tasks



22 3 MemoNav: Agent Design

MemoNav: A navigation agent that mimics the working

memory of the human brain

We introduce 3 types of scene memories:

1. Short-term memory (STM): Local nodes in a topology
map

2. Long-term memory (LTM): A global map node

3. Working memory (WM): STM retained by our proposed
forgetting module and LTM
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MemoNav architecture
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Adaptive Forgetting Module

@ Decode the topological map while assigning each short-term Effect

memory attention score{e;}t;_, - Retain goal-relevant information and
® Temporarily remove (forget) the bottom 20% of the short-term exclude noise from irrelevant areas
memory « Reduce computation

@ Before the next navigation goal, the forgotten memories are

restored to the topological map

I Map nodes with
0—*>1 attention scores

— Map edge
[ | I Goals
Goal 1 Goal 2 Goal 3 '91 Agent position

Visualization of attention scores for STM (map nodes)
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Long-term memory (LTM) generation Effect
@ On top of the topology map, we add a global - Store scene-level features
node as the LTM « Facilitate feature fusion among

®@ Graph convolution is used to aggregate STM long-distance graph nodes

+ Assist in the forgetting module

features into LTM
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(b) Topolgé map:

The LTM connects and aggregates all node features
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Generate WM for decision-making Effect

@ The retained STM and LTM are further encoded into @ Both local and global information is

working memory (WM) by the graph attention mechanism used for decision-making

@ Use the information that is most

@ WM is input to the policy module — Navigation actions

beneficial to the goals

rmim‘ |:> Policy IZ> Navigation
- e Network actions

(9) Memory decoder
(e) Memory encoder and decoder:

Retained STM + LTM GATV2 Working Decoding

Encoding memory Decision-making
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Quantitative comparison on multi-goal navigation tasks

Scene Methods 1-goal 2-goal 3-goal 4-goal
SR SPL PR PPL PR PPL PR PPL
ANS [10] 30.0 11.0 - - - - - -
NTS [11] 43.0 26.0 - - . -

G CNNLSTM [44] 53.1 39.2 315 106 18.0 28 124 1.6
TSGM [22] 703 500 278 161 174 104 134 46
VGM [23] 70.0 554 429 171 295 70 215 4.1

@ Map node - Map edge
MemoNav (ours)| 74.7 57.9 50.8 20.1 380 90 289 5.1
CNNLSTM [44] 162 98 108 26 7.7 14 : :
_ M TSGM [22] 240 146 135 6.2 7.8 3.8 . :
Analysis: VGM [23] 251 16.6 167 50 11.8 2.5 . :
©) The SR of MemoNav on multi—goal MemoNayv (ours)| 26.1 16.3 19.5 5.6 13.6 2.9 - -

tasks outperf the oth ignificantly. :
Asks OUIpertorms the others sighiticantly (SR/PR: Success Rate, SPL/PPL: Path length-weighted success rate)
® MemoNav achieves leading

performances consistently on two popular

scene datasets
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Ablation Study of the proposed working memory model

Components 1-goal 2-goal 3-goal 4-goal
Forget LTM WM SR SPL PR PPL PR PPL PR PPL

1 52.1 46.7 429 171 295 7.0 215 41
p v 55.1 46.1 449 175 294 65 215 4.2
3 v 589 49.7 438 178 296 69 251 4.0
4 v v 606 499 481 1956 376 91 288 4.9
5 v v 61.1 489 476 178 337 79 274 5.0
6 v v v 62.4 50.7 508 201 380 90 289 51

(SR/PR: Success Rate, SPL/PPL: Path length-weighted success rate)

Analysis:

@ Applied independently, the forgetting module and LTM both improves performance.

The combination of the two brings larger gains

@ The synergy among the three components leads to the best performance



22 3 MemoNav: Experiments (A

Ablation study of forgetting threshold p

1-goal

Differences in SPL/PPL (%)
|
|_I

-2 —+— 2-goal
—+— 3-goal
-4- —a— 4-goal
0.0 0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.8
Forgetting threshold Forgetting threshold

Analysis:

@ MemoNav performs the best on easier tasks with a lower p but a higher p is more
beneficial for harder tasks.

@ MemoNav maintains high SR while forgetting 40% of STM on the 4-goal tasks.
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Qualitative comparison

3
- ) I
s JJJ []
Analysis: Our MemoNav explores the .
o . 72 i
scenes more efficiently, plans faster 243 steps A A0 steps alled)
paths, and owns greater ability to get =
. VGM
rid of deadlocks. .
1
89 steps 500 steps (failed)
MemoNav -
#
61 steps 58 steps 210 steps 225 steps
1-goal 2-goal 3-goal 4-goal

W ,- Trajectory MM Goals [ Sstarting location
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Qualitative comparison: visualization of multi-goal trajectories

Time —

HER Goals

Trajectory

V.S.

-

Our MemoNav (Faster) Baseline method (VGM)

Visual Graph Memory With Unsupervised Representation for Visual Navigation, ICCV2021
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Qualitative comparison: visualization of multi-goal trajectories

Time —

HER Goals

Trajectory

V.S.

Our MemoNav (Faster) Baseline method (VGM)

Visual Graph Memory With Unsupervised Representation for Visual Navigation, ICCV2021



Thanks for
watching!




