
Neural Redshift:
Random Networks are not
Random Functions

Damien Teney
Armand Nicolicioiu
Valentin Hartmann
Ehsan Abbasnejad

Idiap Research Institute
ETH Zurich
EPFL
University of Adelaide

It’s not SGD

GD without stochasticity works too
Stochastic training is not necessary for generalization, Geiping et al. 2021

Models from gradient-free methods also generalize, e.g. rejection sampling
Loss landscapes are all you need: NN generalization can be explained without the implicit bias of grad. descent, Chiang et al. 2022

There is a simplicity bias even in untrained language models
The no free lunch theorem, Kolmogorov complexity, and the role of inductive biases in machine learning, Goldblum et al. 2023

Why do neural networks generalize so well?

Not all neural networks generalize well

Some applications need special architectures, e.g. sine activations in INRs (NeRF)
Implicit neural representations with periodic activation functions, Sitzmann et al. 2020

Tabular datasets often work better with decision trees
Why do tree-based models still outperform deep learning on tabular data, Grinsztajn et al. 2022

Why do neural networks generalize so well?

Some properties of common architectures

make them well suited to most real-world data

What are these properties?

What gives neural networks these properties?

Inductive biases

Existing work looks at models during/after training,

which confounds effects of architectures/optimization. (simplicity bias, spectral bias …)

We examine random-weight untrained MLPs.

How to measure these properties?

2D Input, scalar output

(as for regression or binary classification)

Different activation ⟹different function ‘shape’

Examples of functions implemented by random-weight, 2D-input networks:

Popular activations

(simplicity bias, smooth functions)

Prior work showed that (S)GD training acts like Bayesian inference.
Random models reflect the prior distribution over functions.

Among the many solutions that fit the training data,
those close to the prior will be favored.

Why should we care about random networks?

Deep learning generalizes because the parameter-function map is biased towards simple functions, Valle-Perez et al. 2018

Neural networks are a priori biased towards boolean functions with low entropy, Mingard et al. 2019

Larger weights/activations ⟹ higher complexity

Increasing
weight

magnitude

ReLU-like activations:
no/weak sensitivity to weight magnitude

Other activations:
strong sensitivity

How to quantify these properties?

How to quantify these properties?

Quantifiable • high frequency in Fourier decomposition

characterizations • high order in decomposition in polynomial basis

of inductive biases • non-compressibility (dictionary size with LZ compression)

Low
frequency

High
frequency

Low
frequency

High
frequency

The strong simplicity bias is unique to ReLU-like activations

Low
frequency

High
frequency

Impact of other components

Lower complexity No impact Higher complexity

ReLU-like activations
Layer normalization

Residual connections

Width
Bias magnitudes

Other activations
Depth

Multiplicative interactions

Despite measuring different proxies of complexity:
▪ frequency (Fourier)
▪ polynomial order (Legendre, Chebyshev)
▪ compressibility (LZ)

Different complexity measures are correlated

We correlated complexity at initialization with generalization in trained models.

Generalization occurs when the architecture’s preferred complexity
matches the target function’s.

In some cases, a bias towards higher complexity is desirable.

For example: learning INRs, parity function, avoiding shortcut learning.

Is this relevant after training?

We tweak the preferred complexity with a fixed prefactor before the activations.

Mitigating shortcut learning (Colored-MNIST)

Sweet spot to

learn the digit

(task-specific!)

Transformers are biased towards compressible sequences

We greedily sample sequences from an untrained GPT-2 architecture.

Similar interventions cause an increase in sequence complexity.

Transformers seem to inherit inductive biases from their building blocks via

via mechanisms similar to those in simple models.

Weight magnitudes ActivationDepth

Complexity
(dictionary size
in compression

algorithm)

Fresh explanations for the success of deep learning independent from

gradient-based training.

The ‘simplicity bias’ is not a universal property of all architectures,

it can be explained without gradient descent

but is not always desirable.

Can cause shortcut learning, prevent learning complex patterns, …

The findings suggest possibilities for nudging inductive biases

and controlling the functions implemented by trained models.

E.g. via reparameterization, learning activations, …

Take-aways

	Slide 1: Neural Redshift: Random Networks are not Random Functions
	Slide 2: Why do neural networks generalize so well?
	Slide 3: Why do neural networks generalize so well?
	Slide 4
	Slide 5: How to measure these properties?
	Slide 6: Different activation ⟹ different function ‘shape’
	Slide 7: Why should we care about random networks?
	Slide 8: Larger weights/activations ⟹ higher complexity
	Slide 9: How to quantify these properties?
	Slide 10: How to quantify these properties?
	Slide 11
	Slide 12
	Slide 13: The strong simplicity bias is unique to ReLU-like activations
	Slide 14: Impact of other components
	Slide 15: Different complexity measures are correlated
	Slide 16: Is this relevant after training?
	Slide 17: Mitigating shortcut learning (Colored-MNIST)
	Slide 18: Transformers are biased towards compressible sequences
	Slide 19: Take-aways

