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3D Vision Applications

3D Reconstruction Autonomous Driving Augmented Reality

SLAM and Localization

calibrate cameras estimate camera poses/motion triangulate points
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Camera Calibration

Offline Calibration Self-calibration
(autocalibration)

, Can provide complex camera model

/ Not always possible

, Can be used "in the wild"

/ Usually simpler camera models

Image adopted from: Zuzana Kukelova et al. “Efficient solution to the epipolar
geometry for radially distorted cameras.” CVPR. 2015
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Camera Model
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We want camera intrinsics: focal length, principal point, skew, distortion coeffs...

We can often use additional assumptions: no skew, no distortion, principal point
in the image center, square pixels → only f remains unknown.

Image adopted from: R. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision. 2003
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Camera Focal Length Estimation

Possible from a single image in some cases:

Known or learned objects/scene

Regular geometry observed, e.g.:

▶ Calibration patterns

▶ Repeating patterns

▶ Orthogonal sets of parallel lines

In general we need at least two-views!
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Fundamental Matrix

F = K−⊤
2 [t]×RK−1

1

F contains information on camera intrinsics Ki =

fi 0 cx,i
0 fi cy,i
0 0 1

 and pose (R, t).

6 / 20



Fundamental Matrix

F = K−⊤
2 [t]×RK−1

1

We estimate F using point correspondences and RANSAC
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Bougnoux Formula

We can usually assume that the principal points (c1, c2) are in the image centers
and estimate the focal length of the first camera f1 from F using:3

f2
1 = −c⊤2 [e2]×ÎFc1c⊤1 F⊤c2

c2[e2]×ÎFÎF⊤c2
(1)

Equivalent formula exists for f2
2 .

Both can also be calculated directly from elements of F.4

3Sylvain Bougnoux. “From projective to euclidean space under any practical situation, a criticism of self-calibration.” ICCV. 1998

4Oleh Rybkin. “Robust Focal Length Estimation.” Supervised by: Tomáš Pajdla. Bachelor’s Thesis. Czech Technical University in Prague, 2017
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Problems

Singularity: The denominator vanishes when the
principal axes of the two cameras are coplanar (they
intersect). This makes the formula unstable in many
practical situations!

Imaginary f : The formula provides fi in squared form,
thus sometimes yielding imaginary fi. This can be
caused by instability or errors in F, c.
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Alternative - Iterative Optimization

Hatley and Silpa-Anan5 propose to optimize F, c1, c2 with LM w.r.t cost:

C = wFCF
+

∑
i∈{1,2}

wfi,p(f
2
i,p − f2

i )
2 + wci,p ||ci,p − ci||2 + wpCp(fi) (2)

Sampson Error w.r.t.
inlier matches

Prior for fi Prior for ci Penalty for low fi

, Able to correct for error in c1, c2,F

, Outputs real f1, f2

/ fi still from eq. (1) → singularities

/ Sampson Error is expensive

/ Many iterations to converge
/ Weights need to be tuned

5Richard Hartley and Chanop Silpa-Anan. “Reconstruction from two views using approximate calibration.” ACCV. 2002
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Our Contribution

New method for self-calibration of f1, f2 from F

▶ Solved as optimization problem using a simpler cost function

▶ We propose an efficient iterative algoritm for optimization of the cost function

▶ More robust (accurate) than SOTA

▶ Significantly faster than other iterative approaches

New RANSAC check → further precision improvement and faster RANSAC

Both extensively tested on different real-world datasets with different
features and feature matchers and RANSAC variants

10 / 20



Our Contribution

New method for self-calibration of f1, f2 from F

▶ Solved as optimization problem using a simpler cost function

▶ We propose an efficient iterative algoritm for optimization of the cost function

▶ More robust (accurate) than SOTA

▶ Significantly faster than other iterative approaches

New RANSAC check → further precision improvement and faster RANSAC

Both extensively tested on different real-world datasets with different
features and feature matchers and RANSAC variants

10 / 20



Our Contribution

New method for self-calibration of f1, f2 from F

▶ Solved as optimization problem using a simpler cost function

▶ We propose an efficient iterative algoritm for optimization of the cost function

▶ More robust (accurate) than SOTA

▶ Significantly faster than other iterative approaches

New RANSAC check → further precision improvement and faster RANSAC

Both extensively tested on different real-world datasets with different
features and feature matchers and RANSAC variants

10 / 20



Estimating fi - Our Approach

We solve an optimization problem:

min
f1,f2,c1,c2

∑
i=1,2

wf
i (fi − fpi )

2 + wc
i ∥ci − cpi ∥

2 (3)

s.t. κ1 = σ1(v
⊤
1 ω

∗
1v1)(u

⊤
1 ω

∗
2u2)+

+ σ2(v
⊤
1 ω

∗
1v2)(u

⊤
2 ω

∗
2u2) = 0 (4)

κ2 = σ1(v
⊤
1 ω

∗
1v2)(u

⊤
1 ω

∗
2u1)+

+ σ2(v
⊤
2 ω

∗
1v2)(u

⊤
1 ω

∗
2u2) = 0, (5)

where κ1, κ2 are two Kruppa equations6 derived from ω∗
i = KiK⊤

i and SVD of F.

6Manolis IA Lourakis and Rachid Deriche. “Camera self-calibration using the Kruppa equations and the SVD of the fundamental matrix: The case of varying intrinsic
parameters.” PhD thesis. INRIA, 2000
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Estimating fi - Our Approach

To solve the problem we use the Lagrangian.

L =
∑
i=1,2

wf
i (fi − fpi )

2 + wc
i ∥ci − cpi ∥

2 − 2λ1κ1 − 2λ2κ2 (6)

Solving ∇L = 0 using algebraic methods is not feasible - system too complex
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We propose a hybrid (iterative + algebraic) approach:7

We fix unknowns (fi, cx,i, cy,i) in higher order monomials
to values estimated in previous step.

In each iteration we solve 2 polynomial equations
of degree 4 using GB solver.8

We iterate until the relative change is small
or we hit 50 iterations.

7Peter Lindstrom. “Triangulation made easy.” CVPR. 2010

8Viktor Larsson, Kalle Astrom, and Magnus Oskarsson. “Efficient solvers for minimal problems by syzygy-based reduction.” CVPR. 2017
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Synth Data - Performance in Degenerate Configurations

Ours Hartley and Silpa-Anan5 Fetzer et al.9 Bougnoux3 GT f1 Prior f1
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9Torben Fetzer, Gerd Reis, and Didier Stricker. “Stable intrinsic auto-calibration from fundamental matrices of devices with uncorrelated camera parameters.” CVPR. 2020
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Synth Data - Priors

Ours Hartley and Silpa-Anan5 Fetzer et al.9 Bougnoux3 GT f1 Prior f1

300 480 540 600 660 720 780 900 1200 No Prior
Prior for f1

0

200

400

600

800

1000

1200

1400

E
st

im
a
te

d
 f

1

Our method works with inaccurate priors!
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Real Focal Length Checking (RFC)
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PRO+LO-RANSAC

OpenCV USAC:

Default
MAGSAC++
Accurate
PROSAC

Original
RFC

F with imaginary fi from the Bougnoux
formula usually lead to fewer inliers
than F with real fi.

We use this with an efficient
formula4 to reject models in RANSAC:

faster - not scoring bad models

better accuracy

Results on real data10 with LoFTR11 →

4Oleh Rybkin. “Robust Focal Length Estimation.” Supervised by: Tomáš Pajdla. Bachelor’s Thesis. Czech Technical University in Prague, 2017

10Yuhe Jin et al. “Image matching across wide baselines: From paper to practice.” IJCV (2021)

11Jiaming Sun et al. “LoFTR: Detector-free local feature matching with transformers.” CVPR. 2021
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Real Data Evaluation

Evaluated on two large-scale datasets with COLMAP GT:

Phototourism10

▶ 12 evaluation scenes of historical landmarks
▶ 1000 image pairs per scene

Aachen Day-Night v1.112

▶ 5000 image pairs

We use COLMAP priors: fpi = 1.2max(widthi,heighti)

12Zichao Zhang, Torsten Sattler, and Davide Scaramuzza. “Reference pose generation for long-term visual localization via learned features and view synthesis.” IJCV (2021)
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fi Estimation Accuracy

Ours Hartley and Silpa-Anan5 Fetzer et al.9 Bougnoux3 Prior RFC Original
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Our iterative method and RFC beat SOTA in terms of ferri =
|festi −fgti |

fgti
.

F estimated using Magsac++13 + LoFTR11 matches - more experiments in paper.
13Daniel Barath et al. “MAGSAC++, a fast, reliable and accurate robust estimator.” CVPR. 2020 17 / 20



Pose Estimation Accuracy

Phototourism10 Aachen Day-Night v1.1 12

Method RFC
Median mAAp Median mAAp

perr 10° 20° perr 10° 20°

Ours
6.43° 40.48 56.01 9.52° 27.62 46.28

✓ 6.29° 41.03 56.78 8.78° 29.29 48.13

Hartley5 9.19° 30.15 46.94 12.19° 21.10 38.74
✓ 9.00° 30.61 47.69 11.37° 22.12 40.61

Fetzer9 9.40° 33.00 47.25 12.33° 24.34 39.69
✓ 8.94° 33.64 48.51 10.66° 25.62 42.16

Bougnoux3 7.55° 37.17 52.70 10.25° 26.73 45.07
✓ 7.39° 37.57 53.21 9.69° 27.25 45.61

Prior
11.17° 22.63 41.98 13.00° 17.06 37.27

✓ 11.05° 22.73 42.31 12.73° 17.68 38.05

Pose error perr = max
(
∠
(
Rest,Rgt

)
,∠

(
test, tgt

))
and mean average accuracy

(mAAp) evaluation shows that our method leads to better poses. 18 / 20



Summary

Our proposed method for robust self-calibration of f from F beats SOTA in
terms of accuracy and is faster than previous iterative approaches.

If you plan to use images with unknown intrinsics (crowdsourced, changing f
of a single camera) consider using our method.

If you need to estimate F with RANSAC consider using RFC.

More info (method details, experiments - case of f1 = f2) in the paper.
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Code available on Github.

Thank you for your attention!
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