

FACULTY OF MATHEMATICS, PHYSICS AND INFORMATICS

Comenius University Bratislava

FACULTY OF ELECTRICAL ENGINEERING CTU IN PRAGUE

Robust Self-calibration of Focal Lengths from the Fundamental Matrix

Viktor Kocur, Daniel Kyselica, Zuzana Kúkelová

3D Vision Applications

3D Reconstruction

Autonomous Driving

Augmented Reality

SLAM and Localization

■ calibrate cameras ■ estimate camera poses/motion ■ triangulate points

Camera Calibration

Offline Calibration

Self-calibration (autocalibration)

Camera Calibration

Offline Calibration

- © Can provide complex camera model
 - Not always possible

Self-calibration (autocalibration)

- Can be used "in the wild"
- 🙂 Usually simpler camera models

Image adopted from: Zuzana Kukelova et al. "Efficient solution to the epipolar geometry for radially distorted cameras." CVPR. 2015

Camera Model

We want camera intrinsics: focal length, principal point, skew, distortion coeffs...

We can often use additional assumptions: no skew, no distortion, principal point in the image center, square pixels \rightarrow only f remains unknown.

Image adopted from: R. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision. 2003

Camera Focal Length Estimation

Possible from a single image in some cases:

- Known or learned objects/scene
- Regular geometry observed, e.g.:
 - Calibration patterns
 - Repeating patterns
 - Orthogonal sets of parallel lines

In general we need at least two-views!

Fundamental Matrix

$$\blacktriangleright \mathbf{F} = \mathbf{K}_2^{-\top} [\mathbf{t}]_{\times} \mathbf{R} \mathbf{K}_1^{-1} \checkmark$$

F contains information on camera intrinsics $\mathbf{K}_i = \begin{bmatrix} f_i & 0 & c_{x,i} \\ 0 & f_i & c_{y,i} \\ 0 & 0 & 1 \end{bmatrix}$ and pose (**R**, **t**).

Fundamental Matrix

 $\blacktriangleright \mathbf{F} = \mathbf{K}_2^{-\top} [\mathbf{t}]_{\times} \mathbf{R} \mathbf{K}_1^{-1} \checkmark$

We estimate ${\bf F}$ using point correspondences and RANSAC

We can usually assume that the principal points (c_1, c_2) are in the image centers and estimate the focal length of the first camera f_1 from **F** using:³

$$f_1^2 = -\frac{\boldsymbol{c}_2^\top [\boldsymbol{e}_2]_{\times} \hat{\boldsymbol{\mathsf{I}}} \boldsymbol{\mathsf{F}} \boldsymbol{\mathsf{c}}_1 \boldsymbol{\mathsf{c}}_1^\top \boldsymbol{\mathsf{F}}^\top \boldsymbol{\mathsf{c}}_2}{\boldsymbol{\mathsf{c}}_2 [\boldsymbol{e}_2]_{\times} \hat{\boldsymbol{\mathsf{I}}} \hat{\boldsymbol{\mathsf{I}}} \hat{\boldsymbol{\mathsf{I}}}^\top \boldsymbol{\mathsf{c}}_2}$$
(1)

Equivalent formula exists for f_2^2 .

Both can also be calculated directly from elements of F.⁴

³ Sylvain Bougnoux. "From projective to euclidean space under any practical situation, a criticism of self-calibration." *ICCV*. 1998

⁴Oleh Rybkin. "Robust Focal Length Estimation." Supervised by: Tomáš Pajdla. Bachelor's Thesis. Czech Technical University in Prague, 2017

Singularity: The denominator vanishes when the principal axes of the two cameras are coplanar (they intersect). This makes the formula unstable in many practical situations!

Singularity: The denominator vanishes when the principal axes of the two cameras are coplanar (they intersect). This makes the formula unstable in many practical situations!

Singularity: The denominator vanishes when the principal axes of the two cameras are coplanar (they intersect). This makes the formula unstable in many practical situations!

Imaginary *f*: The formula provides f_i in squared form, thus sometimes yielding imaginary f_i . This can be caused by instability or errors in **F**, *c*.

Hatley and Silpa-Anan⁵ propose to optimize $\mathbf{F}, \mathbf{c}_1, \mathbf{c}_2$ with LM w.r.t cost:

$$C = w_{\mathsf{F}}C_{\mathsf{F}} + \sum_{i \in \{1,2\}} w_{f_{i,p}}(f_{i,p}^2 - f_i^2)^2 + w_{\mathbf{c}_{i,p}} ||\mathbf{c}_{i,p} - \mathbf{c}_i||^2 + w_p C_p(f_i)$$
(2)
Sampson Error w.r.t.
inlier matches
$$Prior for f_i \qquad Prior for \mathbf{c}_i \qquad Penalty for low f_i$$

Hatley and Silpa-Anan⁵ propose to optimize $\mathbf{F}, \mathbf{c}_1, \mathbf{c}_2$ with LM w.r.t cost:

$$C = w_{\mathsf{F}}C_{\mathsf{F}} + \sum_{i \in \{1,2\}} w_{f_{i,p}}(f_{i,p}^2 - f_i^2)^2 + w_{\mathbf{c}_{i,p}}||\mathbf{c}_{i,p} - \mathbf{c}_i||^2 + w_pC_p(f_i)$$
(2)
Sampson Error w.r.t.
inlier matches

$$Prior for f_i \qquad Prior for \mathbf{c}_i \qquad Penalty for low f_i$$

- \bigcirc Able to correct for error in c_1, c_2, F
- \bigcirc Outputs real f_1, f_2

⁵Richard Hartley and Chanop Silpa-Anan. "Reconstruction from two views using approximate calibration." ACCV. 2002

Hatley and Silpa-Anan⁵ propose to optimize $\mathbf{F}, \mathbf{c}_1, \mathbf{c}_2$ with LM w.r.t cost:

$$C = w_{\mathsf{F}}C_{\mathsf{F}} + \sum_{i \in \{1,2\}} w_{f_{i,p}}(f_{i,p}^2 - f_i^2)^2 + w_{\mathbf{c}_{i,p}} ||\mathbf{c}_{i,p} - \mathbf{c}_i||^2 + w_p C_p(f_i)$$
(2)
Sampson Error w.r.t.
inlier matches
$$Prior for f_i \qquad Prior for \mathbf{c}_i \qquad Penalty for low f_i$$

- \bigcirc Able to correct for error in c_1, c_2, F
- \bigcirc Outputs real f_1, f_2

- \bigcirc f_i still from eq. (1) \rightarrow singularities
- Sampson Error is expensive
- Many iterations to converge
- 😟 Weights need to be tuned

- **•** New method for self-calibration of f_1, f_2 from **F**
 - Solved as optimization problem using a simpler cost function
 - We propose an efficient iterative algoritm for optimization of the cost function
 - More robust (accurate) than SOTA
 - Significantly faster than other iterative approaches

- **•** New method for self-calibration of f_1, f_2 from **F**
 - Solved as optimization problem using a simpler cost function
 - We propose an efficient iterative algoritm for optimization of the cost function
 - More robust (accurate) than SOTA
 - Significantly faster than other iterative approaches
- \blacksquare New RANSAC check \rightarrow further precision improvement and faster RANSAC

- **•** New method for self-calibration of f_1, f_2 from **F**
 - Solved as optimization problem using a simpler cost function
 - We propose an efficient iterative algoritm for optimization of the cost function
 - More robust (accurate) than SOTA
 - Significantly faster than other iterative approaches
- \blacksquare New RANSAC check \rightarrow further precision improvement and faster RANSAC
- Both extensively tested on different real-world datasets with different features and feature matchers and RANSAC variants

We solve an optimization problem:

$$\min_{f_1, f_2, \mathbf{c}_1, \mathbf{c}_2} \quad \sum_{i=1,2} w_i^f (f_i - f_i^\rho)^2 + w_i^\mathbf{c} \|\mathbf{c}_i - \mathbf{c}_i^\rho\|^2 \tag{3}$$

⁶Manolis IA Lourakis and Rachid Deriche. "Camera self-calibration using the Kruppa equations and the SVD of the fundamental matrix: The case of varying intrinsic parameters." PhD thesis. INRIA, 2000

We solve an optimization problem:

$$\min_{f_1, f_2, \mathbf{c}_1, \mathbf{c}_2} \sum_{i=1,2} w_i^f (f_i - f_i^p)^2 + w_i^{\mathbf{c}} \|\mathbf{c}_i - \mathbf{c}_i^p\|^2$$
s.t.
$$\kappa_1 = \sigma_1 (\mathbf{v}_1^\top \omega_1^* \mathbf{v}_1) (\mathbf{u}_1^\top \omega_2^* \mathbf{u}_2) + \\
+ \sigma_2 (\mathbf{v}_1^\top \omega_1^* \mathbf{v}_2) (\mathbf{u}_2^\top \omega_2^* \mathbf{u}_2) = 0$$

$$\kappa_2 = \sigma_1 (\mathbf{v}_1^\top \omega_1^* \mathbf{v}_2) (\mathbf{u}_1^\top \omega_2^* \mathbf{u}_1) + \\
+ \sigma_2 (\mathbf{v}_2^\top \omega_1^* \mathbf{v}_2) (\mathbf{u}_1^\top \omega_2^* \mathbf{u}_2) = 0,$$
(3)
(5)

where κ_1, κ_2 are two Kruppa equations⁶ derived from $\omega_i^* = \mathbf{K}_i \mathbf{K}_i^{\top}$ and SVD of **F**.

⁶Manolis IA Lourakis and Rachid Deriche. "Camera self-calibration using the Kruppa equations and the SVD of the fundamental matrix: The case of varying intrinsic parameters." PhD thesis. INRIA, 2000

$$L = \sum_{i=1,2} w_i^f (f_i - f_i^p)^2 + w_i^c \|\mathbf{c}_i - \mathbf{c}_i^p\|^2 - 2\lambda_1 \kappa_1 - 2\lambda_2 \kappa_2$$
(6)

Solving $\nabla L = \mathbf{0}$ using algebraic methods is not feasible - system too complex

⁷ Peter Lindstrom. "Triangulation made easy." CVPR. 2010

⁸ Viktor Larsson, Kalle Astrom, and Magnus Oskarsson. "Efficient solvers for minimal problems by syzygy-based reduction." CVPR. 2017

$$L = \sum_{i=1,2} w_i^f (f_i - f_i^p)^2 + w_i^c \|\mathbf{c}_i - \mathbf{c}_i^p\|^2 - 2\lambda_1 \kappa_1 - 2\lambda_2 \kappa_2$$
(6)

Solving $\nabla L = \mathbf{0}$ using algebraic methods is not feasible - system too complex We propose a hybrid (iterative + algebraic) approach:⁷

⁷Peter Lindstrom. "Triangulation made easy." CVPR. 2010

⁸Viktor Larsson, Kalle Astrom, and Magnus Oskarsson. "Efficient solvers for minimal problems by syzygy-based reduction." CVPR. 2017

$$L = \sum_{i=1,2} w_i^f (f_i - f_i^p)^2 + w_i^c \|\mathbf{c}_i - \mathbf{c}_i^p\|^2 - 2\lambda_1 \kappa_1 - 2\lambda_2 \kappa_2$$
(6)

Solving $\nabla L = \mathbf{0}$ using algebraic methods is not feasible - system too complex We propose a hybrid (iterative + algebraic) approach:⁷

• We fix unknowns $(f_i, c_{x,i}, c_{y,i})$ in higher order monomials to values estimated in previous step.

⁷Peter Lindstrom. "Triangulation made easy." CVPR. 2010

⁸Viktor Larsson, Kalle Astrom, and Magnus Oskarsson. "Efficient solvers for minimal problems by syzygy-based reduction." CVPR. 2017

$$L = \sum_{i=1,2} w_i^f (f_i - f_i^p)^2 + w_i^c \|\mathbf{c}_i - \mathbf{c}_i^p\|^2 - 2\lambda_1 \kappa_1 - 2\lambda_2 \kappa_2$$
(6)

Solving $\nabla L = \mathbf{0}$ using algebraic methods is not feasible - system too complex We propose a hybrid (iterative + algebraic) approach:⁷

- We fix unknowns $(f_i, c_{x,i}, c_{y,i})$ in higher order monomials to values estimated in previous step.
- In each iteration we solve 2 polynomial equations of degree 4 using GB solver.⁸

⁷Peter Lindstrom. "Triangulation made easy." CVPR. 2010

⁸Viktor Larsson, Kalle Astrom, and Magnus Oskarsson. "Efficient solvers for minimal problems by syzygy-based reduction." CVPR. 2017

$$L = \sum_{i=1,2} w_i^f (f_i - f_i^p)^2 + w_i^c \|\mathbf{c}_i - \mathbf{c}_i^p\|^2 - 2\lambda_1 \kappa_1 - 2\lambda_2 \kappa_2$$
(6)

Solving $\nabla L = \mathbf{0}$ using algebraic methods is not feasible - system too complex We propose a hybrid (iterative + algebraic) approach:⁷

- We fix unknowns $(f_i, c_{x,i}, c_{y,i})$ in higher order monomials to values estimated in previous step.
- In each iteration we solve 2 polynomial equations of degree 4 using GB solver.⁸
- We iterate until the relative change is small or we hit 50 iterations.

⁷Peter Lindstrom. "Triangulation made easy." CVPR. 2010

⁸Viktor Larsson, Kalle Astrom, and Magnus Oskarsson. "Efficient solvers for minimal problems by syzygy-based reduction." CVPR. 2017

$$L = \sum_{i=1,2} w_i^f (f_i - f_i^p)^2 + w_i^c \|\mathbf{c}_i - \mathbf{c}_i^p\|^2 - 2\lambda_1 \kappa_1 - 2\lambda_2 \kappa_2$$
(6)

Solving $\nabla L = \mathbf{0}$ using algebraic methods is not feasible - system too complex

We propose a hybrid (iterative + algebraic) approach:⁷

- We fix unknowns $(f_i, c_{x,i}, c_{y,i})$ in higher order monomials to values estimated in previous step.
- In each iteration we solve 2 polynomial equations of degree 4 using GB solver.⁸
- We iterate until the relative change is small or we hit 50 iterations.

⁸Viktor Larsson, Kalle Astrom, and Magnus Oskarsson. "Efficient solvers for minimal problems by syzygy-based reduction." CVPR. 2017

⁷Peter Lindstrom. "Triangulation made easy." CVPR. 2010

⁹ Torben Fetzer, Gerd Reis, and Didier Stricker. "Stable intrinsic auto-calibration from fundamental matrices of devices with uncorrelated camera parameters." CVPR. 2020

Synth Data - Priors

F with imaginary f_i from the Bougnoux formula usually lead to fewer inliers than **F** with real f_i .

⁴Oleh Rybkin. "Robust Focal Length Estimation." Supervised by: Tomáš Pajdla. Bachelor's Thesis. Czech Technical University in Prague, 2017

¹⁰Yuhe Jin et al. "Image matching across wide baselines: From paper to practice." IJCV (2021)

¹¹ Jiaming Sun et al. "LoFTR: Detector-free local feature matching with transformers." CVPR. 2021

F with imaginary f_i from the Bougnoux formula usually lead to fewer inliers than **F** with real f_i .

We use this with an efficient formula⁴ to reject models in RANSAC:

faster - not scoring bad models

better accuracy

⁴Oleh Rybkin. "Robust Focal Length Estimation." Supervised by: Tomáš Pajdla. Bachelor's Thesis. Czech Technical University in Prague, 2017

 10 Yuhe Jin et al. "Image matching across wide baselines: From paper to practice." IJCV (2021)

¹¹ Jiaming Sun et al. "LoFTR: Detector-free local feature matching with transformers." CVPR. 2021

We use this with an efficient formula⁴ to reject models in RANSAC:

- faster not scoring bad models
- better accuracy

Results on real data¹⁰ with LoFTR¹¹ \rightarrow

⁴ Oleh Rybkin. "Robust Focal Length Estimation." Supervised by: Tomáš Pajdla. Bachelor's Thesis. Czech Technical University in Prague, 2017

¹⁰Yuhe Jin et al. "Image matching across wide baselines: From paper to practice." IJCV (2021)

¹¹Jiaming Sun et al. "LoFTR: Detector-free local feature matching with transformers." CVPR. 2021

Evaluated on two large-scale datasets with COLMAP GT:

- Phototourism¹⁰
 - 12 evaluation scenes of historical landmarks
 - 1000 image pairs per scene
- Aachen Day-Night v1.1¹²
 - 5000 image pairs

We use COLMAP priors: $f_i^p = 1.2 \max(width_i, height_i)$

*f*_i Estimation Accuracy

Pose Estimation Accuracy

		Phototourism ¹⁰			Aachen Day-Night v1.1 12		
Method	RFC	Median	mAA _p		Median	mAA _p	
		p _{err}	10°	20°	p _{err}	10°	20°
Ours		6.43°	40.48	56.01	9.52°	27.62	46.28
	\checkmark	6.29°	41.03	56.78	8.78°	29.29	48.13
Hartley ⁵		9.19°	30.15	46.94	12.19°	21.10	38.74
	\checkmark	9.00°	30.61	47.69	11.37°	22.12	40.61
Fetzer ⁹		9.40°	33.00	47.25	12.33°	24.34	39.69
	\checkmark	8.94°	33.64	48.51	10.66°	25.62	42.16
Bougnoux ³		7.55°	37.17	52.70	10.25°	26.73	45.07
	\checkmark	7.39°	37.57	53.21	9.69°	27.25	45.61
Prior		11.17°	22.63	41.98	13.00°	17.06	37.27
	\checkmark	11.05°	22.73	42.31	12.73°	17.68	38.05

Pose error $p_{err} = \max \left(\angle \left(\mathbf{R}^{est}, \mathbf{R}^{gt} \right), \angle \left(\mathbf{t}^{est}, \mathbf{t}^{gt} \right) \right)$ and mean average accuracy (mAA_p) evaluation shows that our method leads to better poses.

- Our proposed method for robust self-calibration of *f* from **F** beats SOTA in terms of accuracy and is faster than previous iterative approaches.
- If you plan to use images with unknown intrinsics (crowdsourced, changing f of a single camera) consider using our method.
- If you need to estimate **F** with RANSAC consider using RFC.
- More info (method details, experiments case of $f_1 = f_2$) in the paper.

Code available on Github.

Thank you for your attention!