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3D Vision Applications

Autonomous Driving Augmented Reality

SLAM and Localization

m calibrate cameras m estimate camera poses/motion m triangulate points
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Camera Calibration

Offline Calibration Self-calibration
(autocalibration)
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Camera Calibration

Offline Calibration Self-calibration
(autocalibration)

© Can provide complex camera model © Can be used "in the wild"

® Not always possible ® Usually simpler camera models

Image adopted from: Zuzana Kukelova et al. “Efficient solution to the epipolar
geometry for radially distorted cameras.” CVPR. 2015
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Camera Model

camera
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X
X

e N it

principal axis

image plane

We want camera intrinsics: focal length, principal point, skew, distortion coeffs...

We can often use additional assumptions: no skew, no distortion, principal point
in the image center, square pixels — only f remains unknown.

Image adopted from: R. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision. 2003
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Camera Focal Length Estimation

Possible from a single image in some cases:
m Known or learned objects/scene
m Regular geometry observed, e.g.:
> Calibration patterns
» Repeating patterns
» Orthogonal sets of parallel lines

In general we need at least two-views!
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Fundamental Matrix

F contains information on camera intrinsics K; = |0 f; ¢,;| and pose (R, t).
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Fundamental Matrix

k» F =K, '[t]«RK;! 4

We estimate F using point correspondences and RANSAC
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Bougnoux Formula

We can usually assume that the principal points (¢, ¢;) are in the image centers
and estimate the focal length of the first camera f; from F using:3

_¢;[e]IFcic{F'c,
Cz[ez]XiFiFTCZ

fi =

(1)
Equivalent formula exists for f2.

Both can also be calculated directly from elements of F.#

3Sylvain Bougnoux. “From projective to euclidean space under any practical situation, a criticism of self-calibration.” ICCV. 1998

40leh Rybkin. “Robust Focal Length Estimation.” Supervised by: Tomas Pajdla. Bachelor's Thesis. Czech Technical University in Prague, 2017
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Problems

Singularity: The denominator vanishes when the
principal axes of the two cameras are coplanar (they
intersect). This makes the formula unstable in many
practical situations!
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Problems

Singularity: The denominator vanishes when the
principal axes of the two cameras are coplanar (they
intersect). This makes the formula unstable in many
practical situations!

Imaginary f: The formula provides f; in squared form,
thus sometimes yielding imaginary f;. This can be
caused by instability or errors in F, c.
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Alternative - Iterative Optimization

Hatley and Silpa-Anan® propose to optimize F, ¢y, ¢; with LM w.r.t cost:

C= weCe T Z wr, (fy — 7)? + wellcip — cill® + wpCp(f) (2

[ 1 \

Samp'son Error w.r.t. Prior for f; Prior for ¢; Penalty for low f;
inlier matches

SRichard Hartley and Chanop Silpa-Anan. “Reconstruction from two views using approximate calibration.” ACCV. 2002
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Hatley and Silpa-Anan® propose to optimize F, ¢y, ¢; with LM w.r.t cost:

C= weCe T Z wr, (fy — 7)? + wellcip — cill® + wpCp(f) (2

[ 1 \

Samp'son Error w.r.t. Prior for f; Prior for ¢; Penalty for low f;
inlier matches

© Able to correct for error in 1, ¢, F
© Outputs real fi, f

SRichard Hartley and Chanop Silpa-Anan. “Reconstruction from two views using approximate calibration.” ACCV. 2002
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Alternative - Iterative Optimization

Hatley and Silpa-Anan® propose to optimize F, ¢y, ¢; with LM w.r.t cost:

C= weCe T Z wr, (fy — 7)? + wellcip — cill® + wpCp(f) (2

[ 1 \

Sampson Error w.r.t.

o Prior for f; Prior for ¢; Penalty for low f;
inlier matches
© Able to correct for error in ci,c,F @  f; still from eqg. (1) — singularities
© Outputs real f1,f, ® Sampson Error is expensive

® Many iterations to converge
© Weights need to be tuned

SRichard Hartley and Chanop Silpa-Anan. “Reconstruction from two views using approximate calibration.” ACCV. 2002
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Our Contribution

m New method for self-calibration of f;,f; from F

» Solved as optimization problem using a simpler cost function
> We propose an efficient iterative algoritm for optimization of the cost function
> More robust (accurate) than SOTA

» Significantly faster than other iterative approaches
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Our Contribution

m New method for self-calibration of f;,f; from F

» Solved as optimization problem using a simpler cost function

> We propose an efficient iterative algoritm for optimization of the cost function
> More robust (accurate) than SOTA

» Significantly faster than other iterative approaches

m New RANSAC check — further precision improvement and faster RANSAC

m Both extensively tested on different real-world datasets with different
features and feature matchers and RANSAC variants
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Estimating f; - Our Approach

We solve an optimization problem:

min > w/(fi— £)? + wfc — |7 (3)

f ’f 7c 7c .
vhene T

6Manolis 1A Lourakis and Rachid Deriche. “Camera self-calibration using the Kruppa equations and the SVD of the fundamental matrix: The case of varying intrinsic
parameters.” PhD thesis. INRIA, 2000

11/20



Estimating f; - Our Approach

We solve an optimization problem:

. f P2 C P2
(fi — 1 ilci— ¢ 3
fhg}Tﬁz ig;;V%(l ’) +WN’H’ /” (3)
st. k1= o1(v] wivi)(u] wiuy)+
+ 02(V] wivz) (U wiuz) = 0 (4)
k2 = o1(V]wiva)(u] wiug)+
+ 02(V3 wivz)(u] wiuz) = 0, (5)

where k1, k> are two Kruppa equations® derived from wi = K,-K,.T and SVD of F.

6Manolis 1A Lourakis and Rachid Deriche. “Camera self-calibration using the Kruppa equations and the SVD of the fundamental matrix: The case of varying intrinsic
parameters.” PhD thesis. INRIA, 2000
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Estimating f; - Our Approach

To solve the problem we use the Lagrangian.

L= wi(fi— )+ wflle; — ||> — 2\1k1 — 2)2k2 (6)
i=1,2

Solving VL = 0 using algebraic methods is not feasible - system too complex

7 Peter Lindstrom. “Triangulation made easy.” CVPR. 2010

8viktor Larsson, Kalle Astrom, and Magnus Oskarsson. “Efficient solvers for minimal problems by syzygy-based reduction.” CVPR. 2017
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i=1,2

Solving VL = 0 using algebraic methods is not feasible - system too complex

We propose a hybrid (iterative + algebraic) approach:’

m We fix unknowns (f;, ¢k, ¢y;) in higher order monomials
to values estimated in previous step.
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To solve the problem we use the Lagrangian.

L= wi(fi— )+ wflle; — ||> — 2\1k1 — 2)2k2 (6)
i=1,2
Solving VL = 0 using algebraic methods is not feasible - system too complex
We propose a hybrid (iterative + algebraic) approach:’

m We fix unknowns (f;, ¢k, ¢y;) in higher order monomials
to values estimated in previous step.

m In each iteration we solve 2 polynomial equations
of degree 4 using GB solver.®
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L= wi(fi— )+ wflle; — ||> — 2\1k1 — 2)2k2 (6)
i=1,2

Solving VL = 0 using algebraic methods is not feasible - system too complex

We propose a hybrid (iterative + algebraic) approach:’

m We fix unknowns (f;, ¢k, ¢y;) in higher order monomials
to values estimated in previous step.

m In each iteration we solve 2 polynomial equations
of degree 4 using GB solver.®

m We iterate until the relative change is small
or we hit 50 iterations.
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Estimating f; - Our Approach

To solve the problem we use the Lagrangian.
L= wi(fi— )+ wflle; — ||> — 2\1k1 — 2)2k2 (6)
i=1,2
Solving VL = 0 using algebraic methods is not feasible - system too complex

. . . . .7 =
We propose a hybrid (iterative + algebraic) approach: 10 - convergence on Phototourism

m We fix unknowns (f;, ¢k, ¢y;) in higher order monomials
to values estimated in previous step.

o
o
L

o
o
L

m In each iteration we solve 2 polynomial equations Convergence
of degree 4 using GB solver.? 0.41 Th:shlcgi

. . . . 4 — -4

m We iterate until the relative change is small 0.2 _ 1276

Portion of converged samples

or we hit 50 iterations.

g
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7 peter Lindstrom. “Triangulation made easy.” CVPR. 2010

8viktor Larsson, Kalle Astrom, and Magnus Oskarsson. “Efficient solvers for minimal problems by syzygy-based reduction.” CVPR. 2017
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mmm Ours == Hartley and Silpa-Anan® ™ Fetzer et al.° ™= Bougnoux3 — GT fy == Prior fi

1400

1200+
v~ 1000+
800+
600 -

Estimated

400
200
0

A

15° 10° 5° 3° 2° 1° 0°
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9Torben Fetzer, Gerd Reis, and Didier Stricker. “Stable intrinsic auto-calibration from fundamental matrices of devices with uncorrelated camera parameters.” CVPR. 2020
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Synth Data - Priors

mmm Ours W= Hartley and Silpa-Anan® ™ Fetzer et al.” ™ Bougnoux3 — GT fy == Prior f
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Our method works with inaccurate priors!
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Real Focal Length Checking (RFC)

F with imaginary f; from the Bougnoux
formula usually lead to fewer inliers
than F with real f;.

4Oleh Rybkin. “Robust Focal Length Estimation.” Supervised by: Tomas$ Pajdla. Bachelor's Thesis. Czech Technical University in Prague, 2017
10yyhe Jin et al. “Image matching across wide baselines: From paper to practice.” /JCV (2021)

11Jiaming Sun et al. “LoFTR: Detector-free local feature matching with transformers.” CVPR. 2021

15/20



Real Focal Length Checking (RFC)

F with imaginary f; from the Bougnoux
formula usually lead to fewer inliers
than F with real f;.

We use this with an efficient
formula® to reject models in RANSAC:

m faster - not scoring bad models
m better accuracy

4Oleh Rybkin. “Robust Focal Length Estimation.” Supervised by: Tomas$ Pajdla. Bachelor's Thesis. Czech Technical University in Prague, 2017
10vyhe Jin et al. “Image matching across wide baselines: From paper to practice.” /JCV (2021)
11Jiaming Sun et al. “LoFTR: Detector-free local feature matching with transformers.” CVPR. 2021
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Real Focal Length Checking (RFC)

F with imaginary f; from the Bougnoux 0-64 opency UAC
formula usually lead to fewer inliers 0621 — pefautt
e ++
than F with real f;. 0.60{ — Accurate
—— PROSAC .~:«"
0.58
We use this with an efficient g 4
. . 2 0.56 g
formula® to reject models in RANSAC: <
E 0.541
m faster - not scoring bad models VsAC2:
0.52 4 —— MAGSAC++
m better accuracy PRO+MAGSAC+
0.50 PoselLib:
-4+ Original —— LO-RANSAC
. ] —*— RFC —— PRO+LO-RANSAC
Results on real data'® with LoFTR!! — 048

10! 10?
Mean Runtime (ms)

4Oleh Rybkin. “Robust Focal Length Estimation.” Supervised by: Tomas$ Pajdla. Bachelor's Thesis. Czech Technical University in Prague, 2017
10yyhe Jin et al. “Image matching across wide baselines: From paper to practice.” /JCV (2021)
11Jiaming Sun et al. “LoFTR: Detector-free local feature matching with transformers.” CVPR. 2021
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Real Data Evaluation

Evaluated on two large-scale datasets with COLMAP GT:
m Phototourism*°

» 12 evaluation scenes of historical landmarks
» 1000 image pairs per scene

m Aachen Day-Night v1.11?
» 5000 image pairs

We use COLMAP priors: f7 = 1.2max(width;, height;)

12zichao Zhang, Torsten Sattler, and Davide Scaramuzza. “Reference pose generation for long-term visual localization via learned features and view synthesis.” [JCV (2021)
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fi Estimation Accuracy

— Ours — Hartley and Silpa-Anan® — Fetzer et al. — Bougnoux® — Prior

1.0

o
©

Portion of samples

o
o
L

=}
ES
L

Phototourism

0.0

0j2 0?4 0j6 0?8
Focal length error ff™"

1.0

RFC

Aachen

Original

1.0

o o o
> o ©
L L L

Portion of samples
o

________

0.0

Our iterative method and RFC beat SOTA in terms of ff'" =
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F estimated using Magsac++*3 + LoFTR!! matches - more experiments in paper.

13 paniel Barath et al. “MAGSAC++, a fast, reliable and accurate robust estimator.” CVPR. 2020
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Pose Estimation Accuracy

Phototourism*® Aachen Day-Night v1.1 12
Median mAA Median mAA

Method RFC Dorr 10° pz o° Dorr 10° Pz os
ours 6.43° 40.48 | 56.01 9.52° 27.62 46.28
v 6.29° | 41.03 | 56.78 | 8.78° | 29.29 | 48.13
Hartley’ 9.19° 30.15 | 46.94 | 12.19° | 21.10 38.74
v 9.00° 30.61 | 47.69 | 11.37° | 22.12 40.61
Fetzer® 9.40° 33.00 | 47.25 | 12.33° | 24.34 39.69
v 8.94° 33.64 | 48.51 | 10.66° | 25.62 42.16
Bougnoux3 7.55° 37.17 | 52.70 | 10.25° | 26.73 45.07
v 7.39° 37.57 | 53.21 9.69° 27.25 45.61
Prior 11.17° | 22.63 | 41.98 | 13.00° | 17.06 37.27
v 11.05° | 22.73 | 42.31 | 12.73° | 17.68 38.05

Pose error per = max (£ (R®t, R9Y) , £ (¢, 9%)) and mean average accuracy
(mAA,) evaluation shows that our method leads to better poses. 18/20



Summary

m Our proposed method for robust self-calibration of f from F beats SOTA in
terms of accuracy and is faster than previous iterative approaches.

m If you plan to use images with unknown intrinsics (crowdsourced, changing f
of a single camera) consider using our method.

m If you need to estimate F with RANSAC consider using RFC.

m More info (method details, experiments - case of f; = f5) in the paper.
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Code available on Github.

Thank you for your attention!
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