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A coffee cup, a grape
biscuit, a black oven plate on

a white dining table

Grasp the coffee cup. Grasp the calculator 
at its keypad.

A black pen, a steel marble
and a digital calculator on

an office desk

A black pot, a green bottle, a
bread container arranged on

a kitchen counter

Grab the neck
of the green bottle.

Give me the brown-band
wristwatch.

A brown-band wristwatch, a
sleek black pen and an office

clip placed on a table

A white mug, a spiral
notepad, a fountain pen
resting on a brown desk

Pick the fountain
pen at its cap.

Figure: We present Grasp-Anything++, a new language-driven grasp dataset for
executing grasps through linguistic commands featuring 1M samples, over 3M objects,
and upwards of 10M grasping instructions.
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Introduction

Key Contributions

Our contributions are three-fold:
We propose Grasp-Anything++, a large-scale language-driven dataset for
grasp detection tasks.
We propose a diffusion model with a training objective that explicitly
contributes to the denoising process to detect the grasp poses.
We demonstrate that our Grasp-Anything++ dataset and the proposed
method outperform other approaches and enable successful robotic
applications.
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Methodology

Dataset Generation - Overview

We utilize large-scale foundation models to create the Grasp-Anything++ dataset.
There are three key steps in establishing our dataset:

1 Prompting ChatGPT for a corpus of scene descriptions.
2 Synthesizing images from descriptions and annotating grasp poses.
3 Evaluating grasp poses and reducing biases.
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Dataset Generation - Details
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Methodology

Method Overview
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Figure: Network architecture.

We leverage a denoising
diffusion probabilistic model [2]
to generate grasp poses.
Through ALBEF module [4],
we integrate embeddings from
both text and image. The
attention mask produced by
ALBEF serves as our estimate,
and we apply a contrastive loss
to this mask against xT . We
generate the denoised grasp
pose by passing ALBEF’s
features through MLP layers.
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Methodology

Theoretical Findings

Proposition

Suppose that x̃0, x0 and ϵ are independent, and that∥∥∥∥√αT x̃0 − xT√
1− αT

∥∥∥∥2
2

≥ M

Then there exists C > 0 such that: for arbitrary δ > 0, if Lcontrastive < δ, then

E
[
∥x̃0 − x0∥22

]
< Cδ

The proposition suggests that if the contrastive loss Lcontrastive tends to zero,
then the prediction x̃0 will approach the ground truth x0.
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Results

Language-driven Grasp Detection

We compare our language-driven grasp detection method (LGD) with the
linguistically supported versions of GR-CNN [3], Det-Seg-Refine [1], GG-CNN [5],
CLIPORT [7] and CLIP-Fusion [8]. In all cases, we employ a pretrained CLIP or
BERT as the text embedding.

Baseline Seen Unseen H
GR-ConvNet [3] + CLIP [6] 0.37 0.18 0.24

Det-Seg-Refine [1] + CLIP [6] 0.30 0.15 0.20
GG-CNN [5] + CLIP [6] 0.12 0.08 0.10

CLIPORT [7] 0.36 0.26 0.29
CLIP-Fusion [8] 0.40 0.29 0.33

LGD (ours) + BERT 0.44 0.38 0.41
LGD (ours) + CLIP 0.48 0.42 0.45

Table: Language-driven grasp detection results.
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Results

Qualitative Visualizations

Give me the bottle

Grasp the wristwatch at its dial

(a) Ours (b) GR-ConvNet (c) Det-Seg-Refine (d) GG-CNN (e) CLIPORT (f) CLIP-Fusion

Figure: Language-driven grasp detection results visualization.

We provide qualitative results of the language-driven grasp detection task in
Fig. 3. The outcomes suggest that our method LGD generates more semantically
plausible than other baselines.
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Results

Zero-shot Grasp Detection

This experiment evaluates the performance of Grasp-Anything++ and LGD in
traditional grasp detection tasks against existing datasets and methods.

Grasp-Anything++ (ours) Jacquard Cornell VMRD OCID-grasp
Baseline Base New H Base New H Base New H Base New H Base New H

GR-ConvNet [3] 0.71 0.59 0.64 0.88 0.66 0.75 0.98 0.74 0.84 0.77 0.64 0.70 0.86 0.67 0.75
Det-Seg-Refine [1] 0.62 0.57 0.59 0.86 0.60 0.71 0.99 0.76 0.86 0.75 0.60 0.66 0.80 0.62 0.70

GG-CNN [5] 0.68 0.57 0.62 0.78 0.56 0.65 0.96 0.75 0.84 0.69 0.53 0.59 0.71 0.63 0.67
LGD (no text) (ours) 0.74 0.63 0.68 0.89 0.69 0.77 0.97 0.76 0.85 0.79 0.66 0.72 0.88 0.68 0.76

Table: Base-to-new zero-shot grasp detection results.

The results reveal that Grasp-Anything++ poses a greater challenge due to its
extensive inclusion of unseen objects during testing, as evidenced by lower
detection results compared to similar approaches on related datasets.
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Results

Robotic Evaluation

Figure: Robotic experiment setup.

Baseline Single Cluttered
GR-ConvNet [3] + CLIP [6] 0.33 0.30

Det-Seg-Refine [1] + CLIP [6] 0.30 0.23
GG-CNN [5] + CLIP [6] 0.10 0.07

CLIPORT [7] 0.27 0.30
CLIP-Fusion [8] 0.40 0.40

LGD (ours) 0.43 0.42

Table: Robotic language-driven grasp
detection results.
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