



# Improved Visual Grounding through Self-Consistent Explanations

Ruozhen He<sup>1</sup>, Paola Cascante-Bonilla<sup>1</sup>, Ziyan Yang<sup>1</sup>, Alexander C. Berg<sup>2</sup>, Vicente Ordonez<sup>1</sup>

<sup>1</sup> Rice University <sup>2</sup> University of California, Irvine

# Introduction

- Vision-and-Language Models (VLM)
- Visual Grounding through Visual Explanations



GradCAM visualization of the ALBEF model.<sup>[1]</sup>

## Motivation



Equivalent Paraphrase: "disc"



#### ALBEF

AMC

SelfEQ (Ours)

- Weakly-Supervised Visual Grounding
  - Without any forms of region annotations
- Higher Self-Consistency
- Better localization
- Larger working vocabulary

# Overview

- Paraphrase Generation
  - Utilize a Large Language Model (LLM) to generate paraphrases.
- **Self**-consistency **EQ**uivalence Tuning (SelfEQ)
  - Weakly-supervised objective.
  - Encourages consistent visual explanations.
  - Applies to paraphrased input text pairs that refer to the same object or region in an image.

#### **Self**-Consistent **EQ**uivalent Tuning Objective $F = \phi\left(\phi_v(V), \phi_t(T)\right), F^e = \phi\left(\phi_v(V), \phi_t(T^e)\right)$ $G = \operatorname{ReLU}\left(F \odot \nabla \mathcal{H}\left(\vec{y}, \phi_f^{cls}\left(\phi_v(V), \phi_t(T)\right)\right)\right)$ "a train" - $\phi_t$ G $\phi_{f}$ $\phi_v$ L<sub>sim</sub> $\geq k$ T<sup>e</sup> "a choo choo" **→** φ<sub>t</sub> RoI Mask G<sup>e</sup> $\phi_{f}$ $\phi_v$ $G^{e} = \operatorname{ReLU}\left(F^{e} \odot \nabla \mathcal{H}\left(\vec{y}, \phi_{f}^{cls}\left(\phi_{v}(V), \phi_{t}(T^{e})\right)\right)\right)$

### Self-Consistent EQuivalent Tuning Objective



$$\mathcal{L}_{\text{sim}} = \mathbb{E}_{(V,T,T^e) \sim D'} \left[ \frac{1}{N} \sum_{i,j} (G_{i,j} - G_{i,j}^e)^2 \right]$$

### Self-Consistent EQuivalent Tuning Objective



### Self-Consistent EQuivalent Tuning Objective



# Self-Consistency Data Augmentation



Phrase Extraction

Break down global captions into object-centric phrases.

• Paraphrase Strategy Replace primary objects while keeping other attributes intact.

# Data Examples

#### Q: "a stadium"

A: { "group": "stadium",

"synonym": ["arena", "sports stadium"],

"antonym": [],

"hypernym": ["sports facility", "outdoor sports venue", "place of sporting events"], "meronym": ["stadium seating", "stadium lights", "stadium sound system"]}



**Region-based Caption** 



**Global-based Caption** 

# Experiments

- Training
  - Visual Genome (VG)
  - MS-COCO
- Evaluation
  - Flickr30k
  - ReferIt
- Metric
  - Pointing Game Accuracy

|             |                | Method                | Training | Flickr30k | ReferIt |
|-------------|----------------|-----------------------|----------|-----------|---------|
|             | uc             | Align2Ground [8]      | VG-boxes | 71.00     | -       |
| Experiments | Box Supervisic | 12-in-1 [ <b>37</b> ] | VG-boxes | 76.40     | -       |
| T           |                | InfoGround [20]       | VG-boxes | 76.74     | -       |
|             |                | VMRM [13]             | VG-boxes | 81.11     | -       |
|             |                | AMC [53]              | VG-boxes | 86.59     | 73.17   |
|             |                | TD [58]               | VG       | 42.40     | 31.97   |
|             |                | SSS [21]              | VG       | 49.10     | 39.98   |
|             |                | MG-BiLSTM [2]         | VG       | 57.91     | 62.76   |
|             |                | MG-ELMo [2]           | VG       | 60.08     | 60.01   |
|             | uo             | GbS [3]               | VG       | 73.39     | 62.24   |
|             | upervisi       | g [47]                | VG       | 75.63     | 65.95   |
|             |                | g++ [46]              | VG       | 79.95     | 70.25   |
|             | ox S           | SelfEQ (ours)         | VG       | 81.90     | 67.40   |
|             | out B          | FCVC [14]             | MS-COCO  | 29.03     | 33.52   |
|             | Vitho          | MG-BiLSTM [2]         | MS-COCO  | 53.29     | 47.89   |
|             | 2              | MG-ELMo [2]           | MS-COCO  | 61.66     | 47.52   |
|             |                | GbS [3]               | MS-COCO  | 74.50     | 49.26   |
|             |                | g [47]                | MS-COCO  | 75.43     | 61.03   |
|             |                | g++ [46]              | MS-COCO  | 78.10     | 61.53   |
|             |                | SelfEQ (ours)         | MS-COCO  | 84.07     | 62.75   |

Table 1. Visual Grounding results on two benchmarks using pointing game accuracy with two training datasets.

# Experiments

| Method          | Box Supervision | <b>RefCOCO+</b> |        |  |
|-----------------|-----------------|-----------------|--------|--|
|                 |                 | Test A          | Test B |  |
| InfoGround [20] | Yes             | 39.80           | 41.11  |  |
| VMRM [13]       | Yes             | 58.87           | 50.32  |  |
| AMC [53]        | Yes             | 80.34           | 64.55  |  |
| ALBEF [28]      | No              | 69.35           | 53.77  |  |
| SelfEQ (ours)   | No              | 75.10           | 55.49  |  |

Table 2. Results on RefCOCO+ pointing game accuracy.

# Ablation Studies: Data Quantity



Figure 6. Tuning performance with different data quantities on Flickr30k, ReferIt, RefCOCO+ Test A and Test B.

# Ablation Studies: Data Quantity

| Data      | Objective                    | RefCO  | <b>CO+</b> | Flickr30k | ReferIt |
|-----------|------------------------------|--------|------------|-----------|---------|
| 2         |                              | Test A | Test B     |           |         |
| -         | $\mathcal{L}_{\mathrm{vl}}$  | 69.35  | 53.77      | 79.38     | 59.72   |
| T         | $\mathcal{L}_{	ext{vl}}$     | 72.30  | 54.22      | 78.75     | 65.86   |
| $T + T^e$ | $\mathcal{L}_{	ext{vl}}$     | 71.55  | 53.51      | 78.05     | 64.57   |
| $T + T^e$ | $\mathcal{L}_{	ext{SelfEQ}}$ | 75.10  | 55.49      | 81.90     | 67.40   |

Table 3. Ablation studies on different ways to utilize extra equivalent paraphrased data.

# Ablation Studies: Data Augmentation

| Format   | Objective                                             | Flickr30k             | ReferIt               |
|----------|-------------------------------------------------------|-----------------------|-----------------------|
| -        | $\mathcal{L}_{\mathrm{vl}}$                           | 79.38                 | 59.72                 |
| $C \\ C$ | $\mathcal{L}_{	ext{vl}} \ \mathcal{L}_{	ext{SelfEQ}}$ | 79.90<br>81.28        | 60.64<br>62.04        |
| P<br>P   | $\mathcal{L}_{	ext{vl}} \ \mathcal{L}_{	ext{SelfEQ}}$ | 81.18<br><b>84.07</b> | 61.18<br><b>62.75</b> |

Table 4. Comparisons on data augmentation strategies or global based captions in MS-COCO.

# Ablation Studies: Objective

| Ligim Liggt  |              | RefCOCO+ |        | Flickr30k | ReferIt |
|--------------|--------------|----------|--------|-----------|---------|
| ~ sim        | $\sim$ cst   | Test A   | Test B |           |         |
|              |              | 66.42    | 47.21  | 68.26     | 55.96   |
|              | $\checkmark$ | 73.33    | 55.88  | 80.94     | 66.57   |
| $\checkmark$ | $\checkmark$ | 75.10    | 55.49  | 81.90     | 67.40   |

Table 5. Ablation studies on objective component of self-consistency equivalence tuning objective  $L_{SelfEQ}$ .







# Thank You!





Paola Cascante-Bonilla



Ziyan Yang



Alexander C. Berg



Vicente Ordonez