An Upload-Efficient Scheme for Transferring Knowledge From a Server-Side Pre-trained Generator to Clients in Heterogeneous Federated Learning

Jianqing Zhang¹

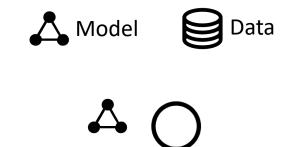
Yang Liu²

Yang Hua³

Jian Cao¹

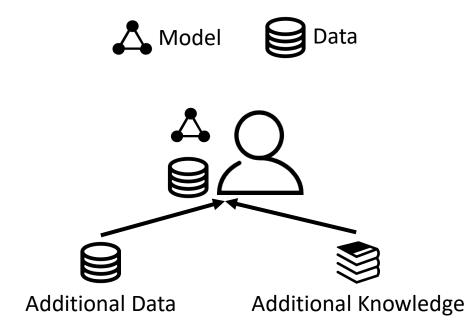
Data shortage

• Data shortage challenges AI model training for individuals and companies.



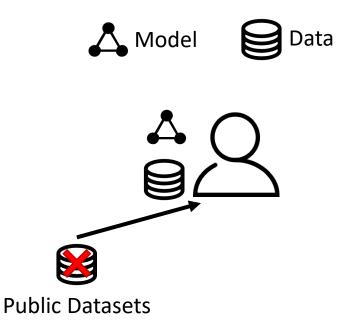
Data shortage

• Additional **data** and **knowledge** can mitigate this challenge.



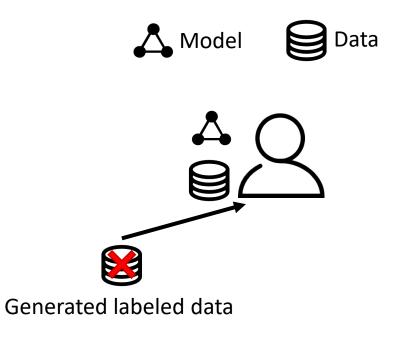
Public datasets

- Additional data need to be **task-related**.
- It is hard to extract such data from **public datasets**.



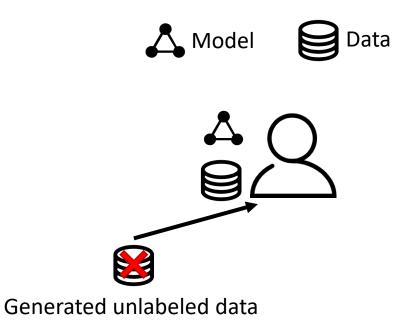
Generated labeled data

• Transmitting human-readable information, e.g., semantics of labels, about specific tasks to the generator raises **privacy concerns**.



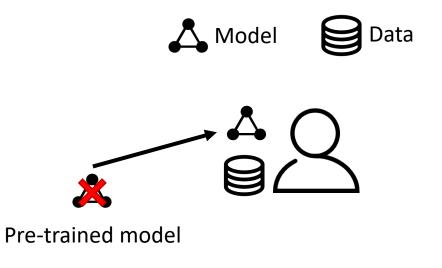
Generated unlabeled data

- Without exposing such information, the generated **unlabeled data** belongs to the **generator's output domain**, which is not naturally related to specific tasks.
- Fulfilling unlabeled data is **challenging** in deep learning.



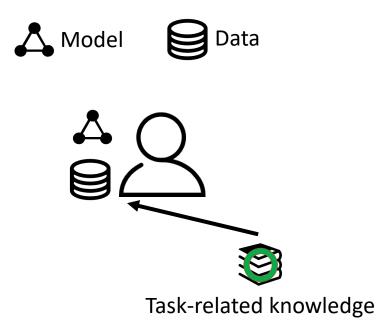
Pre-trained model

- Using a pre-trained model for specific tasks brings additional knowledge.
- However, a task-related pre-trained model is hard to obtain for each specific task.
- Besides, additional knowledge may **not match** the current task.



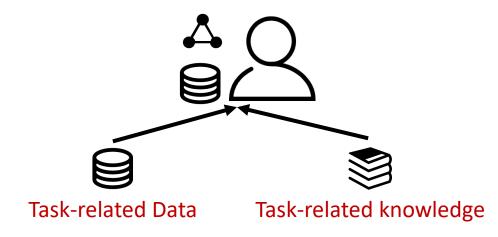
Knowledge from others

- Additional knowledge need to be task-related.
- Clients in federated learning (FL) intend to solve similar tasks, so we use FL techniques.



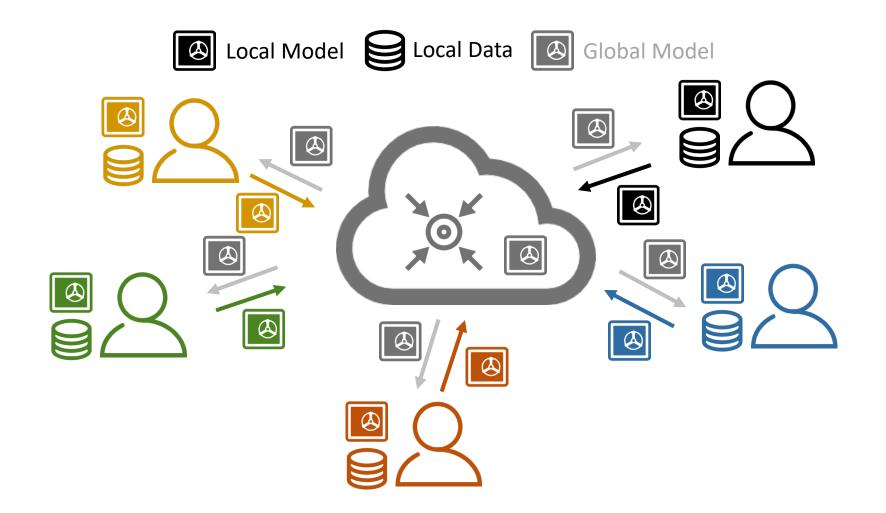
Our method

- Propose a federated learning (FL) method to share task-related (abstract) knowledge.
- Adapt a pre-trained generator to produce task-related data based on task-related knowledge.
- Transfer task-related knowledge and data to each client via an additional supervised task.



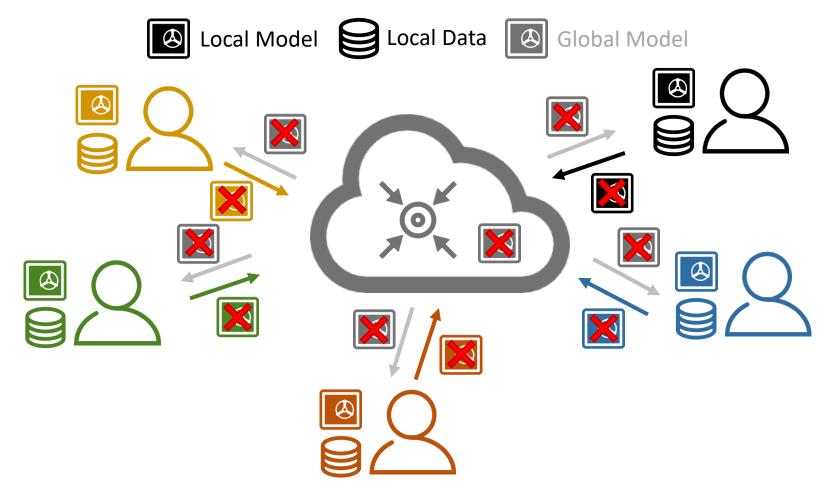
Heterogeneous Federated Learning (HtFL)

• Data heterogeneity, model heterogeneity, communication cost, intellectual property, etc.



Heterogeneous Federated Learning (HtFL)

- The intellectual property is overlooked by most previous work.
- To protect intellectual property, we cannot expose model parameters among clients.



Heterogeneous Federated Learning (HtFL)

• Transmit lightweight knowledge carriers instead of exposing model parameters among clients



Task-related prototypes

 \bigcirc

• Specifically, in our work, clients upload **task-related** prototypes **O** to the server.

Task-related Prototypes

Prototype aggregation

• The server then aggregates client prototypes.

O Task-related Prototypes

Image generation

• The server maps global prototypes \bigcirc to **latent vectors** \triangle , and generates images \bigcirc .

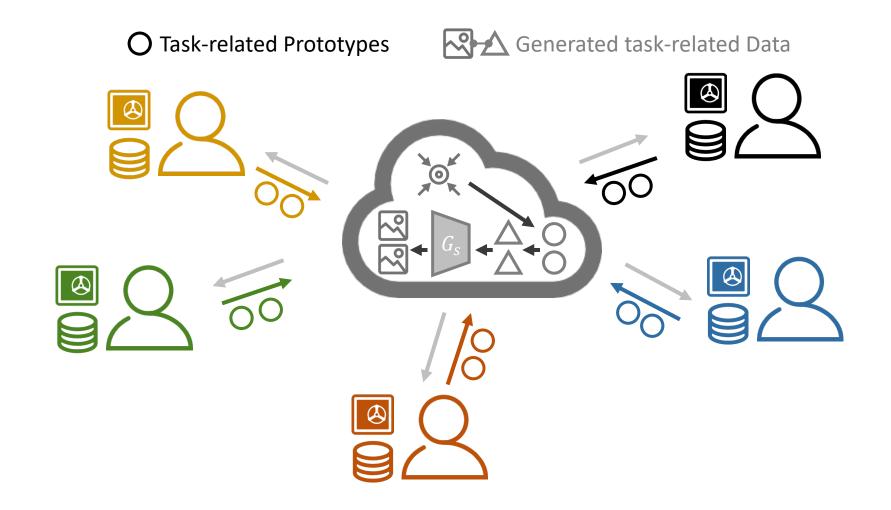
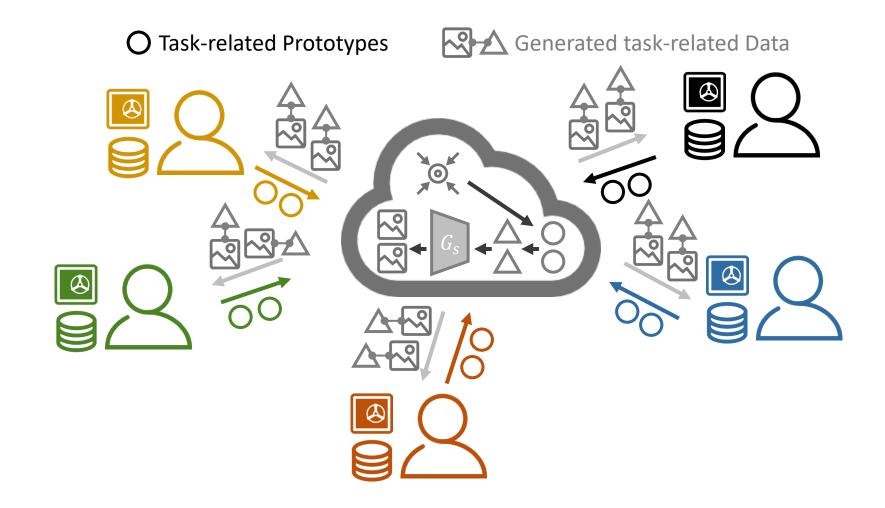
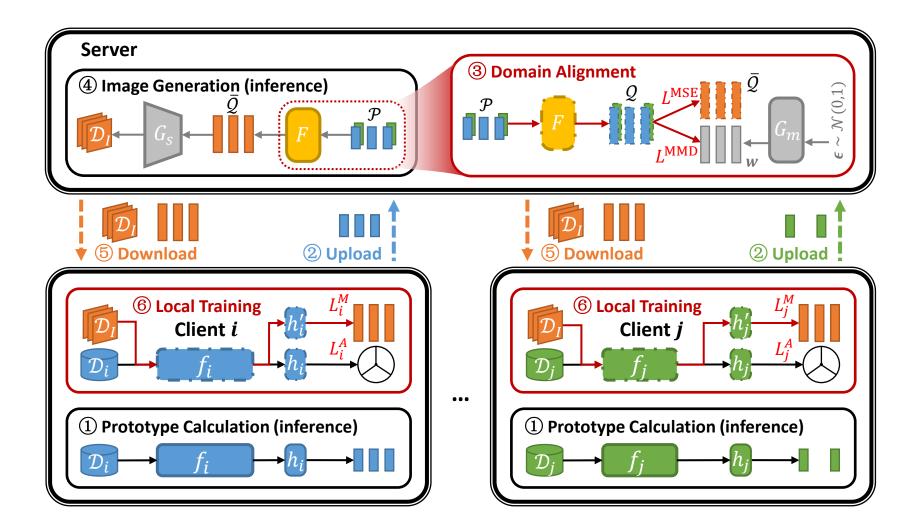


Image-vector pairs

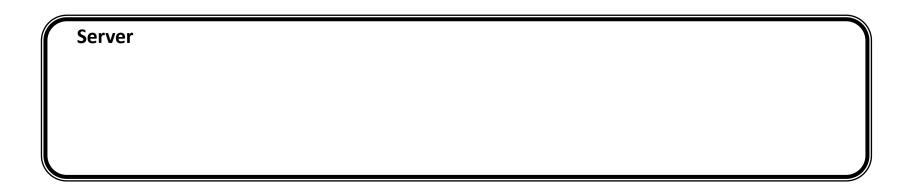
• The server sends image-vector pairs A to each client for an additional supervised task.

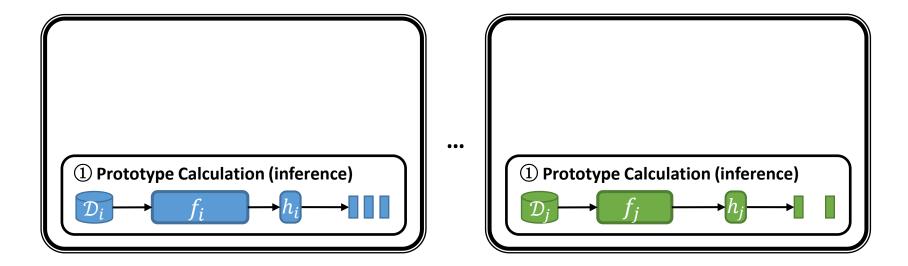


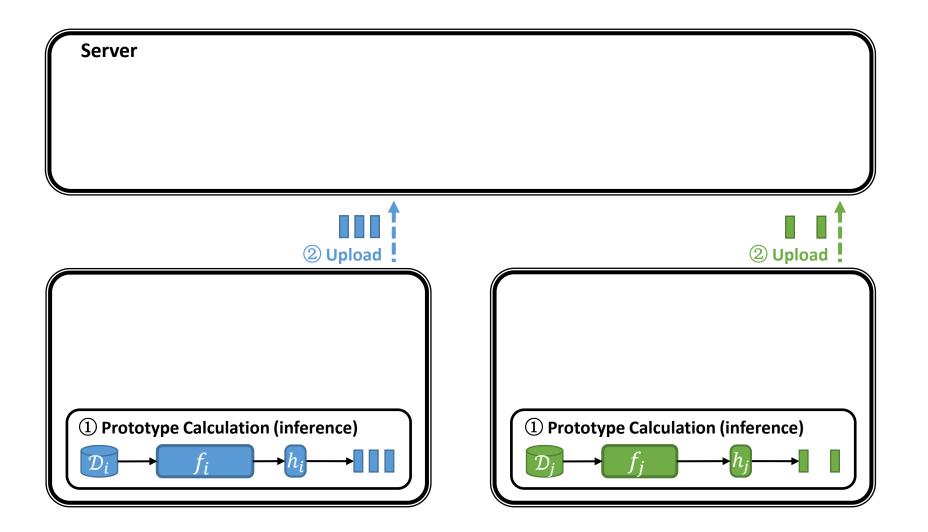
Federated Knowledge-Transfer-Loop (FedKTL)



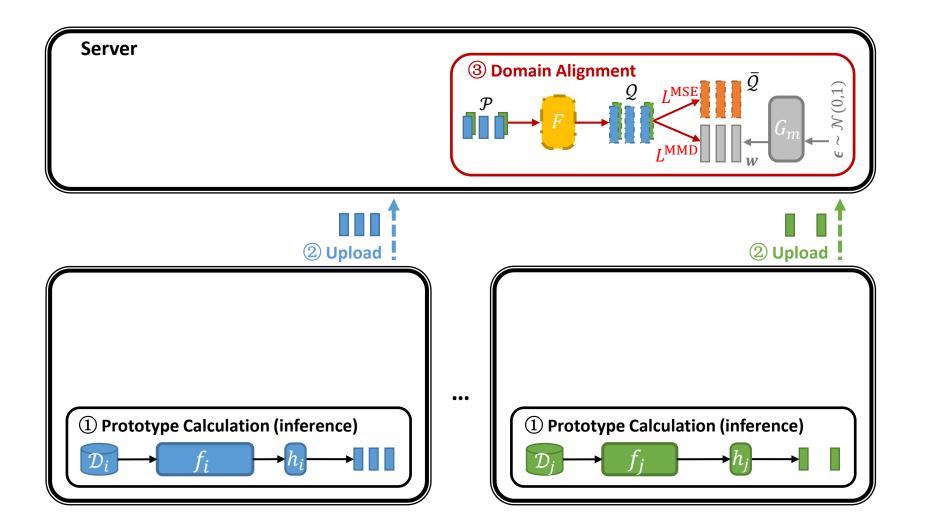
① Prototype Calculation (inference)

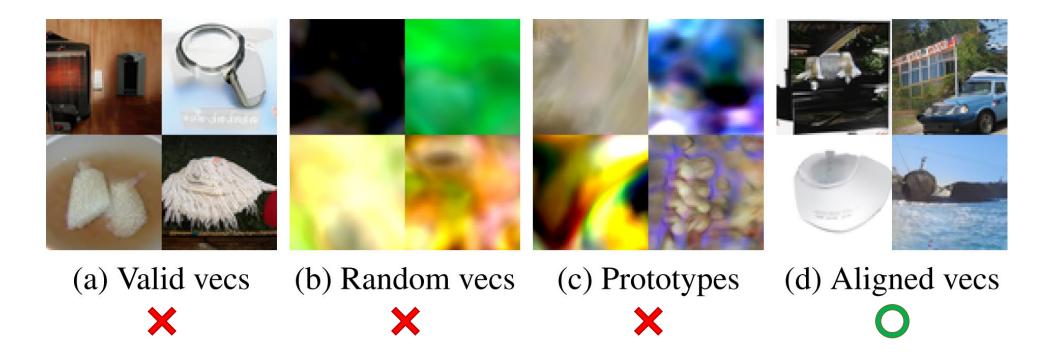




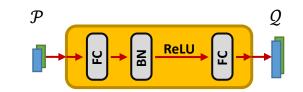


③ Domain Alignment

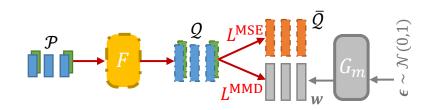


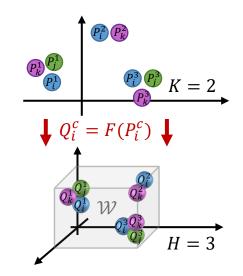


• The architecture of the feature transformer *F*.

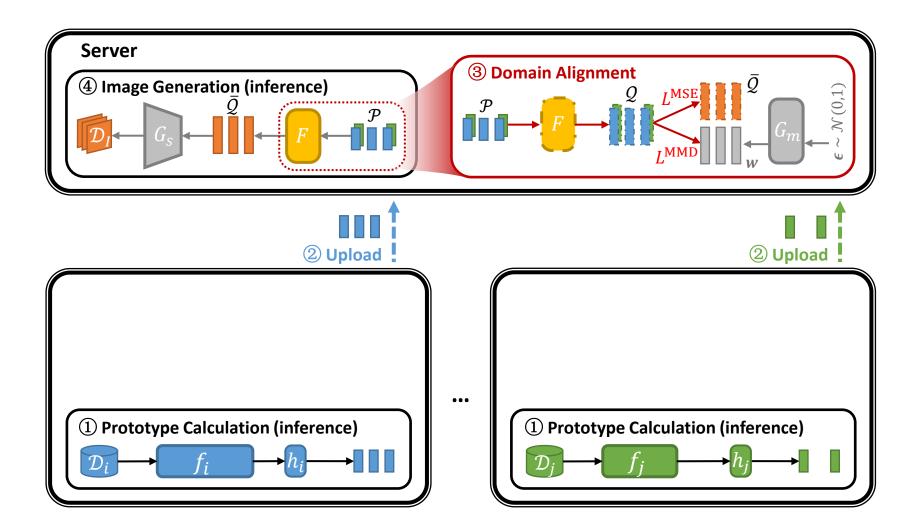


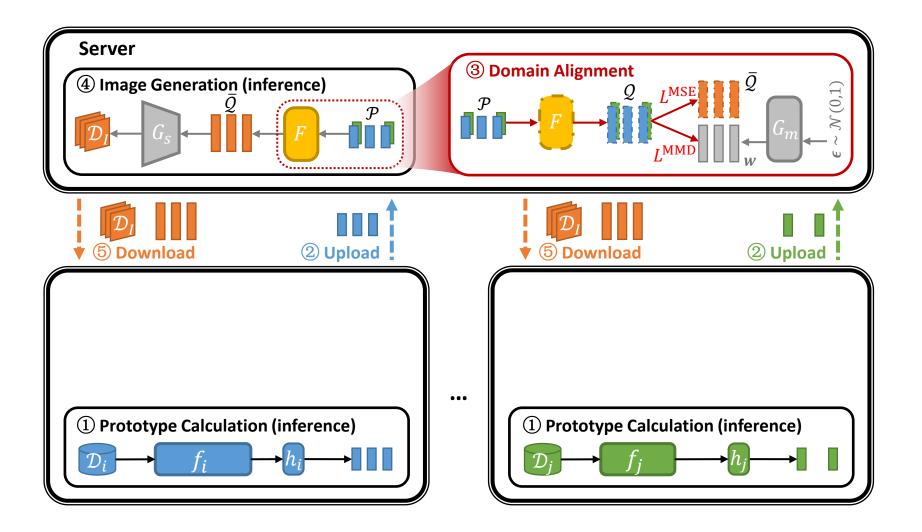
• A domain alignment example.

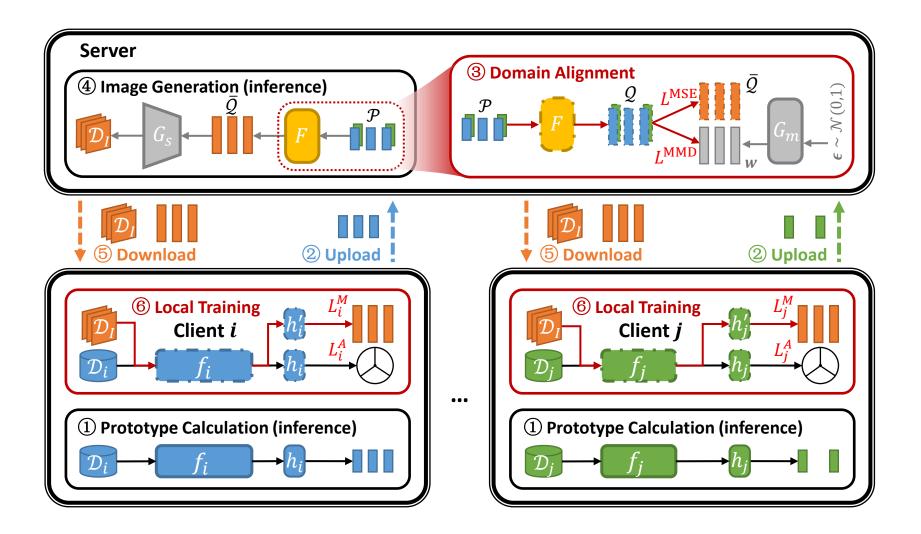




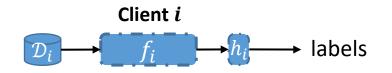
(4) Image Generation (inference)



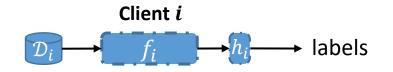




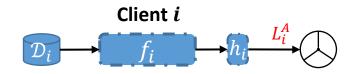
• Original local task: classification.



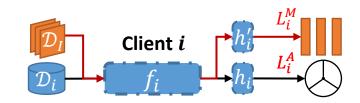
• Heterogeneous models produce **biased prototypes** due to their divergent capabilities.



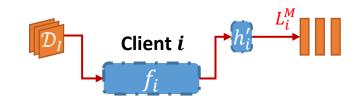
• Replace the original classifier part by an **ETF classifier**[1] to produce unbiased prototypes.



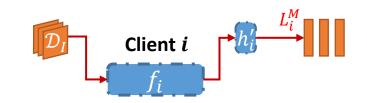
• Transfer task-related knowledge and data to clients through an additional supervised task.



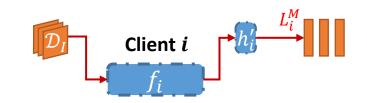
 The image-vector pairs brings both common (from the pre-trained generator) and shared (from participating clients) knowledge only to the feature extractor part.



• We only transfer knowledge to enhance the general feature extraction capability.

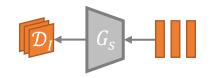


• Thus, the semantic relationship between the generated images and local data is insignificant.



Support for various pre-trained generators

• Generators pre-trained on any image datasets are applicable.



Support for various pre-trained generators

• Generators pre-trained on any image datasets are applicable.

(a) Client #1 (b) AFHQv2 (c) Benches (d) FFHQ-U (e) WikiArt

Support for various pre-trained generators

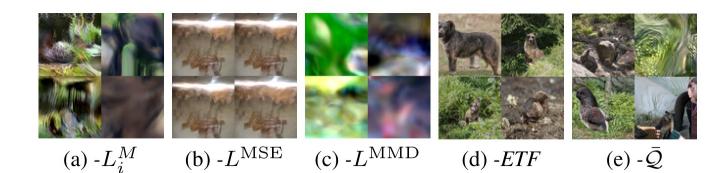
• Generators pre-trained on any image datasets are applicable.

	$\lambda = 0.05$	$\lambda = 0.1$	$\lambda = 0.5$
AFHQv2	26.82 ± 0.32	27.05±0.26	$26.32{\pm}0.52$
Bench	27.71±0.25	$\textbf{28.36}{\pm 0.42}$	$27.56 {\pm} 0.50$
FFHQ-U	27.28±0.23	$27.21 {\pm} 0.35$	$26.59 {\pm} 0.47$
WikiArt	27.37 ± 0.51	$\textbf{27.48}{\pm}\textbf{0.33}$	$27.30{\pm}0.15$

Table 6. The test accuracy (%) on Tiny-ImageNet in the practical setting using $HtFE_8$ with different pre-trained StyleGAN3s, which are represented by the names of the pre-training datasets.

Ablation study

• **Each** component plays a vital role, and none of them can be omitted.



• Experiments on four datasets.

Settings	Pathological Setting			Practical Setting				
Datasets	Cifar10	Cifar100	Flowers102	Tiny-ImageNet	Cifar10	Cifar100	Flowers102	Tiny-ImageNet
LG-FedAvg	86.82±0.26	57.01±0.66	$58.88 {\pm} 0.28$	32.04±0.17	84.55±0.51	$40.65 {\pm} 0.07$	45.93±0.48	24.06±0.10
FedGen	82.83±0.65	$58.26 {\pm} 0.36$	$59.90 {\pm} 0.15$	$29.80{\pm}1.11$	82.55±0.49	$38.73 {\pm} 0.14$	$45.30 {\pm} 0.17$	$19.60 {\pm} 0.08$
FedGH	86.59±0.23	$57.19 {\pm} 0.20$	$59.27 {\pm} 0.33$	$32.55 {\pm} 0.37$	84.43±0.31	$40.99 {\pm} 0.51$	$46.13 {\pm} 0.17$	24.01 ± 0.11
FML	87.06±0.24	$55.15 {\pm} 0.14$	$57.79 {\pm} 0.31$	$31.38{\pm}0.15$	$85.88 {\pm} 0.08$	$39.86 {\pm} 0.25$	$46.08 {\pm} 0.53$	$24.25 {\pm} 0.14$
FedKD	87.32±0.31	$56.56 {\pm} 0.27$	$54.82 {\pm} 0.35$	$32.64{\pm}0.36$	86.45±0.10	$40.56 {\pm} 0.31$	$48.52 {\pm} 0.28$	$25.51 {\pm} 0.35$
FedDistill	87.24±0.06	$56.99 {\pm} 0.27$	$58.51 {\pm} 0.34$	$31.49 {\pm} 0.38$	86.01±0.31	$41.54{\pm}0.08$	$49.13 {\pm} 0.85$	$24.87 {\pm} 0.31$
FedProto	83.39±0.15	$53.59{\pm}0.29$	$55.13 {\pm} 0.17$	$29.28{\pm}0.36$	82.07±1.64	$36.34{\pm}0.28$	41.21 ± 0.22	$19.01 {\pm} 0.10$
FedKTL	88.43±0.13	62.01±0.28	64.72±0.62	34.74±0.17	87.63±0.07	46.94±0.23	53.16±0.08	28.17±0.18

Table 1. The test accuracy (%) on four datasets in the pathological and practical settings using $HtFE_8$.

• Experiments using 14 kinds of models including CNNs and ViTs.

Settings	Different Degrees of Model Heterogeneity					Large Client Amount ($\rho = 0.5$)		
	HtFE ₂	HtFE ₃	$HtFE_4$	HtFE ₉	HtM_{10}	50 Clients	100 Clients	200 Clients
LG-FedAvg	46.61±0.24	$45.56 {\pm} 0.37$	43.91±0.16	$42.04 {\pm} 0.26$	—	37.81±0.12	$35.14{\pm}0.47$	27.93±0.04
FedGen	$43.92{\pm}0.11$	$43.65 {\pm} 0.43$	$40.47 {\pm} 1.09$	$40.28 {\pm} 0.54$	I — I	37.95±0.25	$34.52{\pm}0.31$	$28.01 {\pm} 0.24$
FedGH	46.70 ± 0.35	$45.24{\pm}0.23$	$43.29 {\pm} 0.17$	$43.02 {\pm} 0.86$	—	37.30±0.44	$34.32{\pm}0.16$	$29.27 {\pm} 0.39$
FML	$45.94{\pm}0.16$	$43.05 {\pm} 0.06$	$43.00 {\pm} 0.08$	$42.41 {\pm} 0.28$	39.87±0.09	38.47±0.14	$36.09 {\pm} 0.28$	$30.55 {\pm} 0.52$
FedKD	46.33±0.24	$43.16 {\pm} 0.49$	$43.21 {\pm} 0.37$	$42.15 {\pm} 0.36$	$40.36 {\pm} 0.12$	38.25 ± 0.41	$35.62 {\pm} 0.55$	$31.82{\pm}0.50$
FedDistill	46.88±0.13	$43.53 {\pm} 0.21$	$43.56 {\pm} 0.14$	$42.09 {\pm} 0.20$	$40.95 {\pm} 0.04$	38.51±0.36	$36.06 {\pm} 0.24$	$31.26 {\pm} 0.13$
FedProto	43.97±0.18	$38.14{\pm}0.64$	$34.67 {\pm} 0.55$	$32.74 {\pm} 0.82$	$36.06 {\pm} 0.10$	33.03 ± 0.42	$28.95{\pm}0.51$	$24.28 {\pm} 0.46$
FedKTL	48.06±0.19	49.83±0.44	47.06±0.21	50.33±0.35	45.84±0.15	43.16±0.82	39.73±0.87	34.24±0.45

Table 2. The test accuracy (%) on Cifar100 in the practical setting with different degrees of model heterogeneity or large client amounts.

• Our FedKTL outperforms counterparts by up to **7.31%**.

Settings	Different Degrees of Model Heterogeneity					Large Client Amount ($\rho = 0.5$)		
	HtFE ₂	HtFE ₃	HtFE ₄	HtFE ₉	HtM_{10}	50 Clients	100 Clients	200 Clients
LG-FedAvg	46.61±0.24	45.56±0.37	43.91±0.16	$42.04{\pm}0.26$		37.81±0.12	$35.14{\pm}0.47$	27.93±0.04
FedGen	43.92±0.11	$43.65 {\pm} 0.43$	$40.47 {\pm} 1.09$	40.28 ± 0.54		37.95 ± 0.25	$34.52{\pm}0.31$	$28.01 {\pm} 0.24$
FedGH	46.70±0.35	$45.24 {\pm} 0.23$	$43.29 {\pm} 0.17$	43.02±0.86		37.30 ± 0.44	$34.32{\pm}0.16$	$29.27 {\pm} 0.39$
FML	45.94±0.16	$43.05 {\pm} 0.06$	$43.00 {\pm} 0.08$	42.41 ± 0.28	$39.87 {\pm} 0.09$	38.47±0.14	$36.09 {\pm} 0.28$	$30.55 {\pm} 0.52$
FedKD	46.33±0.24	$43.16 {\pm} 0.49$	$43.21 {\pm} 0.37$	$42.15 {\pm} 0.36$	$40.36 {\pm} 0.12$	38.25 ± 0.41	$35.62 {\pm} 0.55$	$31.82{\pm}0.50$
FedDistill	46.88±0.13	$43.53 {\pm} 0.21$	$43.56 {\pm} 0.14$	$42.09 {\pm} 0.20$	$40.95 {\pm} 0.04$	38.51±0.36	$36.06 {\pm} 0.24$	$31.26 {\pm} 0.13$
FedProto	43.97±0.18	$38.14{\pm}0.64$	$34.67 {\pm} 0.55$	$32.74 {\pm} 0.82$	$36.06 {\pm} 0.10$	33.03±0.42	$28.95{\pm}0.51$	$24.28 {\pm} 0.46$
FedKTL	48.06±0.19	49.83±0.44	47.06±0.21	50.33±0.35	45.84±0.15	43.16±0.82	39.73±0.87	34.24±0.45

Table 2. The test accuracy (%) on Cifar100 in the practical setting with different degrees of model heterogeneity or large client amounts.

• Our FedKTL is **upload-efficient** (lowest upload communication cost)

	Upload	Download	Accuracy
LG-FedAvg	1.03M	1.03M	40.65 ± 0.07
FedGen	1.03M	7.66M	38.73±0.14
FedGH	0.46M	1.03M	$40.99 {\pm} 0.51$
FML	18.50M	18.50M	39.86±0.25
FedKD	16.52M	16.52M	40.56 ± 0.31
FedDistill	0.09M	0.20M	$41.54{\pm}0.08$
FedProto	0.46M	1.02M	$36.34{\pm}0.28$
FedKTL	0.09M	7.17M	46.94±0.23

Table 5. The upload and download overhead per iteration using $HtFE_8$ on Cifar100 with 20 clients in the practical setting. "M" is short for million. The accuracy column is referred from Tab. 1.

Using Stable Diffusion

• Several concepts in generators share similarities when generating contents, thus **they are all applicable** in our FedKTL, such as **StyleGAN** and **Stable Diffusion**.

Generator	StyleGAN-XL	Stable Diffusion
Accuracy	87.63	87.71

Table 8. The test accuracy (%) of our FedKTL with different pretrained generators on Cifar10 in the practical setting using $HtFE_8$.

The cloud-edge scenario

- Our knowledge transfer scheme (KTL) is also applicable in scenarios with only one edge client.
 - Cloud-edge scenarios
 - No collaboration
 - Few-shot learning

Settings	100-way 23-shot	100-way 9-shot	100-way 2-shot
Client Data	$12.53 {\pm} 0.39 \\ 13.02 {\pm} 0.43$	7.55 ± 0.41	$4.44{\pm}1.66$
Our KTL		8.88 ± 0.62	$8.76{\pm}2.25$
Improvement	0.49	1.33	4.32
Improvement Ratio	3.91%	17.61%	97.29%

Table 9. The test accuracy (%) with Cifar100's subsets on a single client using a small model *i.e.*, the 4-layer CNN.

Feel free to contact me!

Home page: https://github.com/TsingZ0

Paper with code: <u>https://github.com/TsingZ0/FedKTL</u>

Thanks!