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Data shortage
• Data shortage challenges AI model training for individuals and companies.

Page 2

Model Data



Data shortage
• Additional data and knowledge can mitigate this challenge.
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Public datasets
• Additional data need to be task-related.
• It is hard to extract such data from public datasets.
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Generated labeled data 
• Transmitting human-readable information, e.g., semantics of labels, about specific tasks to the 

generator raises privacy concerns.

Page 5

Model Data

Generated labeled data 



Generated unlabeled data
• Without exposing such information, the generated unlabeled data belongs to the generator's 

output domain, which is not naturally related to specific tasks.
• Fulfilling unlabeled data is challenging in deep learning.

Page 6

Model Data

Generated unlabeled data 



Pre-trained model
• Using a pre-trained model for specific tasks brings additional knowledge.
• However, a task-related pre-trained model is hard to obtain for each specific task. 

• Besides, additional knowledge may not match the current task.
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Knowledge from others
• Additional knowledge need to be task-related.
• Clients in federated learning (FL) intend to solve similar tasks, so we use FL techniques.
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Our method
• Propose a federated learning (FL) method to share task-related (abstract) knowledge.
• Adapt a pre-trained generator to produce task-related data based on task-related knowledge.

• Transfer task-related knowledge and data to each client via an additional supervised task.
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Heterogeneous Federated Learning (HtFL)
• Data heterogeneity, model heterogeneity, communication cost, intellectual property, etc.
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Heterogeneous Federated Learning (HtFL)
• The intellectual property is overlooked by most previous work. 
• To protect intellectual property, we cannot expose model parameters among clients. 
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Heterogeneous Federated Learning (HtFL)
• Transmit lightweight knowledge carriers instead of exposing model parameters among clients
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Task-related prototypes
• Specifically, in our work, clients upload task-related prototypes      to the server.
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Prototype aggregation
• The server then aggregates client prototypes.
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Image generation
• The server maps global prototypes      to latent vectors , and generates images       .
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Image-vector pairs
• The server sends image-vector pairs to each client for an additional supervised task. 
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Federated Knowledge-Transfer-Loop (FedKTL)
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① Prototype Calculation (inference)
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③ Domain Alignment
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③ Domain Alignment
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③ Domain Alignment
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• The architecture of the feature transformer 𝐹𝐹.
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③ Domain Alignment
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• A domain alignment example. 
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④ Image Generation (inference)
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⑤ Download
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⑥ Local Training
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⑥ Local Training
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• Original local task: classification.
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⑥ Local Training

Page 28

𝑓𝑓𝑖𝑖

Client 𝒊𝒊
ℎ𝑖𝑖𝒟𝒟𝑖𝑖

• Heterogeneous models produce biased prototypes due to their divergent capabilities.

labels



⑥ Local Training
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Client 𝒊𝒊
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• Replace the original classifier part by an ETF classifier[1] to produce unbiased prototypes.

[1] Yang Y, Yuan H, Li X, et al. Neural Collapse Inspired Feature-Classifier Alignment for Few-Shot Class-Incremental Learning. ICLR 2022.
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⑥ Local Training
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• Transfer task-related knowledge and data to clients through an additional supervised task. 
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⑥ Local Training
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𝑓𝑓𝑖𝑖

Client 𝒊𝒊

• The image-vector pairs brings both common (from the pre-trained generator) and shared (from 
participating clients) knowledge only to the feature extractor part. 
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⑥ Local Training
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• We only transfer knowledge to enhance the general feature extraction capability.
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⑥ Local Training
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𝑓𝑓𝑖𝑖

Client 𝒊𝒊

• Thus, the semantic relationship between the generated images and local data is insignificant.
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Support for various pre-trained generators
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• Generators pre-trained on any image datasets are applicable.
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Support for various pre-trained generators
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• Generators pre-trained on any image datasets are applicable.



Support for various pre-trained generators
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• Generators pre-trained on any image datasets are applicable.



Ablation study
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• Each component plays a vital role, and none of them can be omitted.



Excellent performance
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• Experiments on four datasets. 



Excellent performance
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• Experiments using 14 kinds of models including CNNs and ViTs. 



Excellent performance
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• Our FedKTL outperforms counterparts by up to 7.31%.



Excellent performance
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• Our FedKTL is upload-efficient (lowest upload communication cost)



Using Stable Diffusion
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• Several concepts in generators share similarities when generating contents, thus they are all 
applicable in our FedKTL, such as StyleGAN and Stable Diffusion.



The cloud-edge scenario
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• Our knowledge transfer scheme (KTL) is also applicable in scenarios with only one edge client.
• Cloud-edge scenarios
• No collaboration
• Few-shot learning



Feel free to contact me!

Thanks!

Home page: https://github.com/TsingZ0

Paper with code: https://github.com/TsingZ0/FedKTL

https://github.com/TsingZ0/DBE
https://github.com/TsingZ0/FedKTL
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