

Sparse Semi-DETR: Sparse Learnable Queries for Semi-Supervised Object Detection

Tahira Shehzadi, Khurram Azeem Hashmi, Didier Stricker, Muhammad Zeshan Afzal

Poster: Arch 4A-E-99

DFKI RPTU Kaiserslautern-Landau

1

Sparse Semi-DETR Overview

- Sparse Semi-DETR improves semi-supervised object detection for transformers, enhancing detection of small and obscured objects.
- Semi-DETR achieves SOTA on both COCO and PASCAL VOC datasets.

Semi-Supervised Object Detection (SSOD)

• Background

Problem Statement

Settings:

- labeled data is limited: Taking 10% coco as labeled data, and the rest as unlabeled data.
- labeled data is abundant: Taking full coco (118k images) as labeled data, and unlabeled (123k images) as unlabeled data.

Semi-Supervised Object Detection (SSOD)

Background

Unlabeled Data \xrightarrow{Aug} \xrightarrow{Pseudo} $\xrightarrow{Teacher}$ \xrightarrow{pseudo} \xrightarrow{labels} Aug $\xrightarrow{Supervise}$ $\xrightarrow{Supervise}$

Current Research

- Soft-Teacher (Two-Stage Detector),
- Dense-Teacher (One-Stage Detector)

Problem: Anchor generation, Label assignment by various rules, NMS ...

Semi-DETR (End-to-End)

Problem: low performance on small objects, object queries quality.

[Xu 2021] End-to-End Semi-Supervised Object Detection with Soft Teacher ICCV2021
 [Zhou 2022] Dense Teacher: Dense Pseudo-Labels for Semi-supervised Object Detection ECCV2022
 [zhang 2023] Semi-DETR: Semi-Supervised Object Detection with Detection Transformers CVPR2023

- Motivation
 - Bipartite matching makes NMS-free but causes learning inefficiency.
 - Input query features in one-to-many assignment strategy needs to be refined to improve performance for small and partially obscured objects.

• Approach

- Approach
 - **Query Refinement:** Refine one-to-many assignment and combine it with one-to-one assignment to enable more efficient training for small and partially occluded objects.

Stage 1: one-to-many query assignment with refines queries. refined gueries encoded features $\hat{o}_t, o_t = \operatorname{Dec}_t([r_s, q_t])$ Eattention mask $\hat{o}_s, o_s = \mathrm{Dec}_s([r_t, q_s])$ object gueries Stage 2: one-to-one query assignment encoded features $\hat{o}_t, o_t = \operatorname{Dec}_t(q_t, E_t)$ attention mask $\hat{o}_s, o_s = \mathrm{Dec}_s(q)$ object queries

- Approach
 - Reliable Pseudo-Label Filtering: The m groups of ground truths for one-to-many assignment strategy and select the top-k predictions. m is set to 6.

$$\hat{g} = \{\hat{g}_1, \hat{g}_2, \dots, \hat{g}_m\} \ \hat{\sigma}_{one2many} = \left\{ rgmin_{\sigma_j \in C_M^N} \sum_k^M \mathcal{L}_{ ext{match}} \left(\hat{y}_j^t, \hat{g}_{\sigma_j(k)}^s
ight)
ight\}_j^{|\hat{y}^t|}$$

• Results

Methods	Reference	COCO-Partial			
		1%	5%	10%	
FCOS [43] (Supervised)	-	8.43 ± 0.03	17.01 ± 0.01	20.98 ± 0.01	
DSL [3]	CVPR22	22.03 ± 0.28 (+13.98)	30.87 ± 0.24 (+13.86)	36.22 ± 0.18 (+15.24)	
Unbiased Teacher v2 [29]	CVPR22	$22.71 \pm 0.42 (+14.28)$	$30.08 \pm 0.04 (+13.07)$	$32.61 \pm 0.03 \ (+11.63)$	
Dense Teacher [58]	ECCV22	22.38 ± 0.31 (+13.95)	$33.01 \pm 0.14 \ (+16.00)$	37.13 ± 0.12 (+16.15)	
Faster RCNN [36] (Supervised)	-	9.05 ± 0.16	18.47 ± 0.22	23.86 ± 0.81	
Humble Teacher [42]	CVPR22	$16.96 \pm 0.38 \ (+7.91)$	27.70 ± 0.15 (+9.23)	$31.61 \pm 0.28 \ (+7.75)$	
Instant-Teaching [59]	CVPR21	$18.05 \pm 0.15 (+9.00)$	$26.75 \pm 0.05 (+8.28)$	30.40 ± 0.05 (+6.54)	
Soft Teacher [52]	ICCV21	$20.46 \pm 0.39 (+11.41)$	$30.74 \pm 0.08 \ (+12.27)$	$34.04 \pm 0.14 \ (+10.18)$	
PseCo [20]	ECCV22	22.43 ± 0.36 (+13.38)	$32.50 \pm 0.08 \ (+14.03)$	36.06 ± 0.24 (+12.2)	
DINO [56] (Supervised)	-	18.00 ± 0.21	29.50 ± 0.16	35.00 ± 0.12	
Omni-DETR [47] (DINO)	CVPR22	27.60 (+9.60)	37.70(+8.20)	41.30 (+6.30)	
Semi-DETR [57] (DINO)	CVPR23	30.5 ± 0.30 (+12.50)	$40.10 \pm 0.15 \ (+10.6)$	$43.5 \pm 0.10 \ (+8.5)$	
Sparse Semi-DETR	-	$30.9 \pm 0.23 \ (+12.90)$	$40.8 \pm 0.12 (+11.30)$	$44.3 \pm 0.01 \ (+9.30)$	

COCO Partial

Methods	Labels	COCO-Partial		
includes.		AP_S	AP_M	AP_L
	1%	13.6	31.2	40.8
Semi-DETR [57]	5%	23.0	43.1	53.7
	10%	25.2	46.8	58.0
	1%	14.8	32.5	41.4
Sparse Semi-DETR	5%	23.9	44.2	54.2
	10%	26.9	48.0	59.6

Methods	VOC12		
Wethous	AP_{50}	AP50:95	
FCOS [43] (Supervised)	71.36	45.52	
DSL [3]	80.70	56.80	
Dense Teacher [58]	79.89	55.87	
Faster RCNN [36] (Supervised)	72.75	42.04	
STAC [40]	77.45	44.64	
HumbleTeacher [42]	80.94	53.04	
Instant-Teaching [59]	79.20	50.00	
DINO [56] (Supervised)	81.20	59.60	
Semi-DETR [57] (DINO)	86.10	65.20	
Sparse Semi-DETR	86.30	65.51	
COCO Method	Full coco-	Full (100	
STAC [40] (18×)	39.5	- <u>0.3</u> → 39.2	
Unbiased Teacher (9×)	$40.2 \xrightarrow{+1.1} 41.3$		
		$40.9 \xrightarrow{+3.6} 44.5$	
SoftTeacher [52] (24×)	40.9	7 44	
SoftTeacher [52] (24×) DSL [3] (12×)	40.9 40.2	$\xrightarrow{+3.6}$ 43.8	
SoftTeacher [52] (24×) DSL [3] (12×) Dense Teacher [58] (18×)	40.9 40.2 41.2	$\xrightarrow{+3.6}{+3.6} 43.8$ $\xrightarrow{+3.6}{46.1}$	
SoftTeacher [52] (24×) DSL [3] (12×) Dense Teacher [58] (18×) PseCo (24×)	40.9 40.2 41.2 41.0	$\xrightarrow{+3.6}{43.8}$ $\xrightarrow{+3.6}{46.1}$ $\xrightarrow{+5.1}{46.1}$	
SoftTeacher [52] $(24 \times)$ DSL [3] $(12 \times)$ Dense Teacher [58] $(18 \times)$ PseCo $(24 \times)$ Instant-Teaching [59] $(24 \times)$	40.9 40.2 41.2 41.0 37.6	$\xrightarrow{+3.6} 43.8$ $\xrightarrow{+3.6} 46.1$ $\xrightarrow{+5.1} 46.1$ $\xrightarrow{-0.27} 40.2$	
SoftTeacher [52] (24×) DSL [3] (12×) Dense Teacher [58] (18×) PseCo (24×) Instant-Teaching [59] (24×) Semi-DETR [57] (8×)	40.9 40.2 41.2 41.0 37.6 48.6	$\xrightarrow{+3.6} 43.8$ $\xrightarrow{+3.6} 46.1$ $\xrightarrow{+5.1} 46.1$ $\xrightarrow{-0.27} 40.2$ $\xrightarrow{+1.8} 50.4$	

PASCAL VOC

• Ablation Study

Query Refinement	Pseudo-Label Filtering	mAP	AP ₅₀	AP ₇₅
×	×	43.5	58.9	46.0
\checkmark	X	43.8	61.1	47.3
×	\checkmark	43.9	60.5	46.3
\checkmark	\checkmark	44.3	61.7	47.6

Effect of Individual Component.

Teacher	Student	mAP	AP_{50}	AP75
×	×	43.5	58.9	46.0
~	×	43.8	61.2	47.2
X	~	44.3	61.7	47.6
~	~	42.8	59.7	45.8

Effect of QR on Student and Teacher module.

Method	mAP	$ AP_{50} $	$ AP_{75} $
Simple Concat	43.4	58.8	46.1
Cosine Similarity	43.7	60.3	46.1
Attention Module	44.3	61.7	47.6

Effect of different variants of queries.

Method	mAP	AP_{50}	AP ₇₅
Single-view Queries	43.0	59.3	46.3
Cross-view Queries	43.5	58.9	46.0
Query Refinement	44.3	61.7	47.6

Effectiveness of Attentional module in QR.

Approach	Training time (min)	
Semi-DETR	38.56	
Sparse Semi-DETR	34.38 +4.18	

Training time for 1k iterations in one-to-many assignment strategy.

- Visualization
 - Sparse Semi-DETR improves Semi-DETR on the detection of small and partially obscured objects.

Semi-DETR

Sparse Semi-DETR

Conclusion

- We present Sparse Semi-DETR, a novel approach in semi-supervised object detection with Sparse Learnable Queries for detection transformers.
- We introduce a novel query refinement module designed to improve object query features, particularly in complex detection scenarios such as identifying small or partially obscured objects.
- We introduce a Reliable Pseudo-Label Filtering Module specifically designed to reduce the effect of noisy pseudo-labels. This module is designed to efficiently identify and extract reliable pseudo boxes from unlabeled data using augmented ground truths, enhancing the consistency of the learning process.
- On the MS-COCO and Pascal VOC object detection benchmarks, Sparse Semi-DETR achieves improvements in performance over current state-of-the-art methods.

Thanks a lot for Your Attention!