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Phase Unwrapping (PU) in Imaging

In many imaging systems,
initial measurement yields a 
phase image wrapped in −𝜋𝜋,𝜋𝜋 .
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Formulation of PU

𝒀𝒀 ∈ ℝ𝑀𝑀×𝑁𝑁: Wrapped phase image; 𝑿𝑿 ∈ ℂ𝑀𝑀×𝑁𝑁: GT Phase image; 
𝑵𝑵 ∈ ℝ𝑀𝑀×𝑁𝑁: Measurement noise;

𝒲𝒲: Wrapping operator: 𝒲𝒲 𝜃𝜃 = 𝜃𝜃 + 𝜋𝜋 mod 2𝜋𝜋 − 𝜋𝜋

PU needs to reconstruct 𝑿𝑿 from 𝒀𝒀.
Challenges: 1) 𝒲𝒲 Solution ambiguity; 2) 𝑵𝑵 Noise corruption.
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End-to-End Supervised Learning for PU 

• Standard CNNs; Treat PU as pixel-wise classification, 
e.g., PhaseNet 2.0 [1] and EESANet [2].
※Struggle to scale to wide-range phase.
※Cannot capture long-range spatial dependencies.

• RNN-based Method; Directly map wrapped phases to 
unwrapped ones, e.g., SQD-LSTM [3].
※A limited number of paths (due to cost constraint) 

cannot capture rich dependencies.

[1] Spoorthi G E, Gorthi R K S S, Gorthi S. PhaseNet 2.0: Phase unwrapping of noisy data based on deep learning approach. IEEE TIP, 2020.
[2] Zhang J, Li Q. EESANet: edge-enhanced self-attention network for two-dimensional phase unwrapping. Optics Express, 2022.
[3] Perera M V, De Silva A. A joint convolutional and spatial quad-directional LSTM network for phase unwrapping. ICASSP, 2021.

Both are impractical !!  GT phase images and wrap counts are costly to collect. 
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Dataset-free Unsupervised Learning for PU

Re-parameterize a phase image via a CNN
and optimize it with wrapped fidelity.

[4] Yang F, Pham T-a, Brandenberg N, et al. Robust phase unwrapping via deep image prior for quantitative phase imaging. IEEE TIP, 2021

argmin𝜽𝜽 𝒲𝒲(𝑓𝑓𝜽𝜽 𝝐𝝐 ) − 𝒚𝒚 𝑝𝑝
𝑝𝑝

updating weightseed No need for GT phase images.
※ Slow due to per-sample training.
※ Ignore knowledge from external data.

CNN

For efficient inference & releasing the use of GT
 End-to-end unsupervised deep learning for PU



Contributions

The 1st external unsupervised DL approach for end-to-end PU.

• The first exploration of deep unrolling network for PU, founded on a

variational model utilizing wrapped gradients and perceiving outliers.

• A re-corruption-based self-reconstruction loss function with noise

tolerance to leverage Itoh’s continuity condition, and a self-distillation

loss function for improved generalization.

• Better than existing unsupervised methods & competitive against the

supervised ones.



Core Ideas
For those whose adjacent points share the same 
wrap count, 𝛁𝛁𝛁𝛁 𝑚𝑚,𝑛𝑛 = 𝛁𝛁𝛁𝛁 𝑚𝑚,𝑛𝑛 + 𝛁𝛁𝛁𝛁 𝑚𝑚,𝑛𝑛 . (1)

For those share different wrap count and satisfy
𝛁𝛁𝑿𝑿 𝑚𝑚,𝑛𝑛 + 𝛁𝛁𝑵𝑵 𝑚𝑚,𝑛𝑛 ∞ ≥ 𝜋𝜋, 
𝒲𝒲(𝛁𝛁𝒀𝒀 𝑚𝑚,𝑛𝑛 ) = 𝛁𝛁𝛁𝛁 𝑚𝑚,𝑛𝑛 + 𝛁𝛁𝑵𝑵 𝑚𝑚,𝑛𝑛 + 2𝜋𝜋𝑲𝑲. (3)

In noisy case: 𝒀𝒀 = 𝒲𝒲 𝑿𝑿 + 𝑵𝑵 , for points 
satisfying 𝛁𝛁𝑿𝑿 𝑚𝑚,𝑛𝑛 + 𝛁𝛁𝑵𝑵 𝑚𝑚,𝑛𝑛 ∞ < 𝜋𝜋, 

𝒲𝒲(𝛁𝛁𝒀𝒀 𝑚𝑚,𝑛𝑛 ) = 𝛁𝛁𝛁𝛁 𝑚𝑚,𝑛𝑛 + 𝛁𝛁𝑵𝑵 𝑚𝑚,𝑛𝑛 . (2)
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Due to majority of non-jump points, 𝛁𝛁𝛁𝛁 can be 
viewed as noisy label of 𝛁𝛁𝛁𝛁, for self-supervised 
loss function.



Variational Regularization Model

• Unfold the proximal gradient descend solver of:

min
𝑿𝑿,𝑬𝑬

𝛁𝛁𝑿𝑿 −𝒲𝒲 𝛁𝛁𝒀𝒀 + 𝑬𝑬 F
2 + 𝜙𝜙 𝑿𝑿 + 𝜓𝜓(𝑬𝑬). 

• Leveraging an 𝑬𝑬 for absorbing the 2𝜋𝜋𝑲𝑲 in 𝒲𝒲(𝛁𝛁𝛁𝛁) = 𝛁𝛁𝛁𝛁 + 𝛁𝛁𝛁𝛁 + 2𝜋𝜋𝜋𝜋.

𝑽𝑽(𝑗𝑗)
(𝑡𝑡) = 𝑿𝑿(𝑗𝑗)

(𝑡𝑡) +
𝛼𝛼 𝑗𝑗−1 − 1

𝛼𝛼 𝑗𝑗
� (𝑿𝑿 𝑗𝑗

𝑡𝑡 − 𝑿𝑿 𝑗𝑗−1
𝑡𝑡 ),

𝑿𝑿(𝑗𝑗)
(𝑡𝑡) = 𝑽𝑽(𝑗𝑗−1)

𝑡𝑡 + 𝜆𝜆 𝑡𝑡 div(𝛁𝛁𝑽𝑽 𝑗𝑗−1
𝑡𝑡 − 𝒲𝒲 𝛁𝛁𝒀𝒀 − 𝑬𝑬 𝑡𝑡−1 ),

𝛼𝛼(𝑗𝑗) = 1/2 � (1 + 1 + 4𝛼𝛼 𝑗𝑗−1
2 ),

For 𝑗𝑗 from 1 to 𝐽𝐽,

where 𝜆𝜆 𝑡𝑡 ,𝑤𝑤 𝑡𝑡 ,𝑑𝑑(𝑡𝑡)are learned from condition (noise strength, etc.) via CAM module.

Accelerated gradient descent 
for solving data fidelity term

𝑬𝑬(𝑡𝑡) = NN𝜓𝜓 𝑬𝑬 𝑡𝑡−1 ,𝑑𝑑 𝑡𝑡 ,

𝑿𝑿(𝑡𝑡) = NN𝜙𝜙 𝑿𝑿 𝐽𝐽
𝑡𝑡 ,𝒢𝒢𝑡𝑡 𝑿𝑿 𝐽𝐽

𝑡𝑡 ,𝑤𝑤 𝑡𝑡 ,

Regularizing 
𝑿𝑿

Regularizing 
𝑬𝑬 for sparsity

Regularization terms 
replaced by two sub-NNs



U3Net (U3 = Unsupervised, Unrolling, Unwrapping)
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Unsupervised Loss functions

• Noise-resistant self-reconstruction loss:

ℒsr: = 𝔼𝔼𝑼𝑼 𝒲𝒲[𝛁𝛁ℱ 𝒲𝒲 𝛁𝛁𝒀𝒀 + 𝛁𝛁𝑼𝑼 − (𝛁𝛁𝒀𝒀 − 𝛁𝛁𝑼𝑼)] F
2

 Once we sample 𝑼𝑼 from the distribution of 𝑵𝑵, the training with ℒsr is 
equivalent to learning noiseless spatial gradient, supervised by 𝛁𝛁𝑿𝑿.

 Introducing an outer 𝒲𝒲 for counteracting the impact of outliers.

 Inductive bias of unrolling CNNs helps reduce the ambiguity of outliers.

Proposition. Let 𝒀𝒀 = 𝒲𝒲(𝑿𝑿 + 𝑵𝑵). Suppose 𝛁𝛁𝒀𝒀[𝑚𝑚,𝑛𝑛] = 𝛁𝛁𝛁𝛁[𝑚𝑚,𝑛𝑛] + 𝛁𝛁𝑵𝑵[𝑚𝑚,𝑛𝑛] is satisfied at 
all points. Assume that 𝑵𝑵,𝑼𝑼~𝒫𝒫 are independent. Then, we have that 
𝔼𝔼𝒀𝒀,𝑼𝑼 𝛁𝛁ℱ 𝒲𝒲 𝛁𝛁𝒀𝒀 + 𝛁𝛁𝑼𝑼 − (𝛁𝛁𝒀𝒀 − 𝛁𝛁𝑼𝑼) F

2 = 𝔼𝔼𝑿𝑿,𝑵𝑵,𝑼𝑼 𝛁𝛁ℱ 𝒲𝒲 𝛁𝛁𝒀𝒀 + 𝛁𝛁𝑼𝑼 − 𝛁𝛁𝑿𝑿 F
2 + 𝐶𝐶0,

where 𝐶𝐶0 is a constant.

Unsupervised loss approaximates supervised loss.



Unsupervised Loss functions

• Self-distillation loss:
ℒsd: = 𝔼𝔼𝑼𝑼 𝛁𝛁ℱ 𝒲𝒲 𝛁𝛁𝒀𝒀 − 𝛁𝛁 �ℱ(𝒲𝒲 𝛁𝛁𝒀𝒀 + 𝛁𝛁𝑼𝑼 ) F

2,
�ℱ denotes the NN detached from the previous iteration with stopped gradient.
 Reducing the NN’s prediction variance, enhancing the PU accuracy.
 Reconciling the input of unrolling network, e.g. 𝒲𝒲 𝛁𝛁𝒀𝒀 + 𝛁𝛁𝑼𝑼 𝒲𝒲 𝛁𝛁𝒀𝒀 , 

improving generalization ability.

• Total loss:
ℒtotal = ℒsr + 𝜂𝜂ℒsd, 𝜂𝜂 ∈ ℝ+



Evaluation on Simulated Phase Patterns

Boldfaced: best results; Underlined: second best results at each column. NRMSE is used for evaluation.

Our U3Net achieves the best results in 8/10 settings, using a lightest-weight unrolling network.



Visualization on Simulated Phase Patterns

Our U3Net provides the best residual image results in both datasets.

Residual visualizations of PU results on MoGR (top) and RME (bottom)



Evaluation on InSAR Data

Our U3Net ranks the first in all settings and shows minimum residual.



Ablation Analysis

 Loss function  Visualization of 𝑬𝑬



Conclusion and Future Work

 To conclude

 In future
 Improving the perceiving schemes for outlier points.
 Enhancing the model robustness to noise inconsistency.

Wrapped Phase Images Randomly 
Generated Seed

GT Phase Images Wrapped Phase Image
(Single Test Sample)

Supervised Learning Internal Learning End-to-End 
Unsupervised Learning GT collection is hard  Time consuming
Bypassing both issues

Wrapped Phase Images

Wrapped Phase Images

☆Our work



Take home messages
• PU can be solved in unsupervised learning manner by utilizing the gradient or

wrapped gradient information of wrapped phase images.
• Well designed physic-encoded NN yields better performance and less complexity.

Thank you
For more, please see https://csyhquan.github.io

https://csyhquan.github.io/
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