

# Unsupervised Deep Unrolling Networks for Phase Unwrapping

Zhile Chen









South China University of Technology

Hui Ji





# Phase Unwrapping (PU) in Imaging



#### **Applications**



3D Depth Sensing



Fringe Projection



InSAR Imaging



MRI

### Formulation of PU



 $Y \in \mathbb{R}^{M \times N}$ : Wrapped phase image;  $X \in \mathbb{C}^{M \times N}$ : GT Phase image;

 $N \in \mathbb{R}^{M \times N}$ : Measurement noise;

 $\mathcal{W}$ : Wrapping operator:  $\mathcal{W}(\theta) = ((\theta + \pi) \mod 2\pi) - \pi$ 

#### **PU needs to reconstruct** *X* **from** *Y*.

<u>Challenges</u>: 1)  $\mathcal{W} \rightarrow$  Solution ambiguity; 2)  $N \rightarrow$  Noise corruption.

# End-to-End Supervised Learning for PU

- Standard CNNs; Treat PU as pixel-wise classification, e.g., PhaseNet 2.0 [1] and EESANet [2].
   \* Struggle to scale to wide-range phase.
   \* Cannot capture long-range spatial dependencies.
- RNN-based Method; Directly map wrapped phases to unwrapped ones, *e.g.*, SQD-LSTM [3].
   \* A limited number of paths (due to cost constraint) cannot capture rich dependencies.



#### Both are impractical $!! \rightarrow$ GT phase images and wrap counts are costly to collect.

Spoorthi G E, Gorthi R K S S, Gorthi S. PhaseNet 2.0: Phase unwrapping of noisy data based on deep learning approach. IEEE TIP, 2020.
 Zhang J, Li Q. EESANet: edge-enhanced self-attention network for two-dimensional phase unwrapping. Optics Express, 2022.
 Perera M V, De Silva A. A joint convolutional and spatial quad-directional LSTM network for phase unwrapping. ICASSP, 2021.



# Dataset-free Unsupervised Learning for PU

Re-parameterize a phase image via a CNN and optimize it with wrapped fidelity.

- ✓ No need for GT phase images.
- \* Slow due to per-sample training.
- **\*** Ignore knowledge from external data.



✓ For efficient inference & releasing the use of GT
→ End-to-end unsupervised deep learning for PU

[4] Yang F, Pham T-a, Brandenberg N, et al. Robust phase unwrapping via deep image prior for quantitative phase imaging. IEEE TIP, 2021

## Contributions

#### The 1st external unsupervised DL approach for end-to-end PU.

- The first exploration of deep unrolling network for PU, founded on a variational model utilizing wrapped gradients and perceiving outliers.
- A re-corruption-based self-reconstruction loss function with noise tolerance to leverage Itoh's continuity condition, and a self-distillation loss function for improved generalization.
- Better than existing unsupervised methods & competitive against the supervised ones.

## Core Ideas



For those whose adjacent points share the same wrap count,  $\nabla Y[m, n] = \nabla X[m, n] + \nabla N[m, n]$ . (1)

Due to majority of non-jump points,  $\nabla Y$  can be viewed as noisy label of  $\nabla X$ , for self-supervised loss function.

2D Itoh's Condition

In **noisy** case:  $Y = \mathcal{W}(X + N)$ , for points satisfying  $\|\nabla X[m,n] + \nabla N[m,n]\|_{\infty} < \pi$ ,  $\mathcal{W}(\nabla Y[m,n]) = \nabla X[m,n] + \nabla N[m,n]$ .

Utilized for the unfolded regularization model.

(2)

For those share different wrap count and satisfy  $\|\nabla X[m,n] + \nabla N[m,n]\|_{\infty} \ge \pi$ ,

 $\mathcal{W}(\nabla Y[m,n]) = \nabla X[m,n] + \nabla N[m,n] + 2\pi K.$ (3)

# Variational Regularization Model

• Unfold the proximal gradient descend solver of:

$$\min_{X,E} \|\nabla X - \mathcal{W}(\nabla Y) + E\|_{F}^{2} + \phi(X) + \psi(E)$$

Regularizing

• Leveraging an **E** for absorbing the  $2\pi K$  in  $\mathcal{W}(\nabla Y) = \nabla X + \nabla N + 2\pi K$ . For *j* from 1 to *J*,

$$X_{(j)}^{(t)} = V_{(j-1)}^{(t)} + \lambda^{(t)} \operatorname{div}(\nabla V_{(j-1)}^{(t)} - (\mathcal{W}(\nabla Y) - E^{(t-1)})),$$
  

$$\alpha_{(j)} = 1/2 \cdot (1 + \sqrt{1 + 4\alpha_{(j-1)}^{2}}),$$
  

$$V_{(j)}^{(t)} = X_{(j)}^{(t)} + \frac{\alpha_{(j-1)} - 1}{\alpha_{(j)}} \cdot (X_{(j)}^{(t)} - X_{(j-1)}^{(t)}),$$
  

$$K^{(t)} = \operatorname{NN}_{\phi} \left( X_{(j)}^{(t)}, \mathcal{G}_{t} \left( X_{(j)}^{(t)} \right), w^{(t)} \right),$$
  

$$E^{(t)} = \operatorname{NN}_{\psi} \left( E^{(t-1)}, d^{(t)} \right),$$
  

$$Regularization terms replaced by two sub-NNs$$

where  $\lambda^{(t)}$ ,  $w^{(t)}$ ,  $d^{(t)}$  are learned from condition (noise strength, etc.) via CAM module.

#### U3Net (U3 = Unsupervised, Unrolling, Unwrapping)



### Unsupervised Loss functions

• Noise-resistant self-reconstruction loss:

$$\mathcal{L}_{sr} := \mathbb{E}_{\boldsymbol{U}} \| \mathcal{W} [ \boldsymbol{\nabla} \mathcal{F} ( \mathcal{W} ( \boldsymbol{\nabla} \boldsymbol{Y} + \boldsymbol{\nabla} \boldsymbol{U}) ) - ( \boldsymbol{\nabla} \boldsymbol{Y} - \boldsymbol{\nabla} \boldsymbol{U}) ] \|_{F}^{2}$$
Unsupervised loss approaximates supervised loss.

**Proposition.** Let  $Y = \mathcal{W}(X + N)$ . Suppose  $\nabla Y[m, n] = \nabla X[m, n] + \nabla N[m, n]$  is satisfied at all points. Assume that  $N, U \sim \mathcal{P}$  are independent. Then, we have that  $\mathbb{E}_{Y,U} \| \nabla \mathcal{F} (\mathcal{W}(\nabla Y + \nabla U)) - (\nabla Y - \nabla U) \|_{F}^{2} = \mathbb{E}_{X,N,U} \| \nabla \mathcal{F} (\mathcal{W}(\nabla Y + \nabla U)) - \nabla X \|_{F}^{2} + C_{0},$ where  $C_{0}$  is a constant.

- > Once we sample **U** from the distribution of **N**, the training with  $\mathcal{L}_{sr}$  is equivalent to learning noiseless spatial gradient, supervised by  $\nabla X$ .
- $\succ$  Introducing an outer  $\mathcal W$  for counteracting the impact of outliers.
- > Inductive bias of unrolling CNNs helps reduce the ambiguity of outliers.

### Unsupervised Loss functions

• Self-distillation loss:  $\mathcal{L}_{sd} := \mathbb{E}_{U} \| \nabla \mathcal{F} (\mathcal{W} (\nabla Y)) - \nabla \overline{\mathcal{F}} (\mathcal{W} (\nabla Y + \nabla U)) \|_{F}^{2},$ 

 $ar{\mathcal{F}}$  denotes the NN detached from the previous iteration with stopped gradient.

- > Reducing the NN's prediction variance, enhancing the PU accuracy.
- ➢ Reconciling the input of unrolling network, e.g.  $\mathcal{W}(\nabla Y + \nabla U) \rightarrow \mathcal{W}(\nabla Y)$ , improving generalization ability.
- Total loss:

$$\mathcal{L}_{\text{total}} = \mathcal{L}_{\text{sr}} + \eta \mathcal{L}_{\text{sd}}, \qquad \eta \in \mathbb{R}^+$$

## **Evaluation on Simulated Phase Patterns**

**Boldfaced:** best results; <u>Underlined</u>: second best results at each column. NRMSE is used for evaluation.

| Dataset      |                                                                                            | MoGR                                                                               |                                                             |                                                                                               |                                                        |                                                        | RME                                                                |                                                        |                                                                                                   |                                                                                     |                                                      | <br>#Param.                                                                                | #FLOPs                                                     | Time                                                        |  |
|--------------|--------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|-------------------------------------------------------------|-----------------------------------------------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------|---------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|------------------------------------------------------|--------------------------------------------------------------------------------------------|------------------------------------------------------------|-------------------------------------------------------------|--|
| SNR(dB)      |                                                                                            | 0                                                                                  | 5                                                           | 10                                                                                            | 20                                                     | 30                                                     | 0                                                                  | 5                                                      | 10                                                                                                | 20                                                                                  | 30                                                   | (M)                                                                                        | (G)                                                        | (msec.)                                                     |  |
| Non-Learning | LS<br>QGPU                                                                                 | 7.91<br>17.12                                                                      | 2.28<br>2.12                                                | 1.20<br>1.15                                                                                  | 0.37<br>0.36                                           | 0.15<br>0.11                                           | 7.85<br>17.26                                                      | 2.50<br>2.29                                           | 1.25<br>1.20                                                                                      | 0.40<br>0.39                                                                        | 0.12<br>0.12                                         |                                                                                            | -                                                          | 8.39<br>14.94                                               |  |
| Supervised   | Ryu. <i>et al.</i><br>PhaseNet2.0<br>SQD-LSTM<br>EESANet<br>TriNet<br>UFormer<br>Restormer | 1.34         8.35         0.87         0.78         5.65         0.50         0.45 | 1.11<br>8.19<br>0.71<br>0.77<br>5.55<br>0.47<br><u>0.38</u> | $ \begin{array}{r} 1.09\\ 8.07\\ 0.70\\ 0.76\\ 5.46\\ 0.47\\ \underline{0.36}\\ \end{array} $ | $1.05 \\ 8.06 \\ 0.69 \\ 0.76 \\ 5.40 \\ 0.46 \\ 0.36$ | $1.05 \\ 8.04 \\ 0.68 \\ 0.74 \\ 5.34 \\ 0.45 \\ 0.35$ | 1.51<br>9.29<br>1.57<br>1.31<br>5.40<br><u>0.58</u><br><b>0.50</b> | $1.05 \\ 8.53 \\ 1.13 \\ 1.31 \\ 5.33 \\ 0.51 \\ 0.43$ | $ \begin{array}{r} 1.01 \\ 7.53 \\ 1.12 \\ 1.25 \\ 5.21 \\ 0.49 \\ \underline{0.42} \end{array} $ | $\begin{array}{c} 0.98 \\ 6.95 \\ 1.10 \\ 1.24 \\ 5.10 \\ 0.49 \\ 0.41 \end{array}$ | 0.93<br>6.86<br>1.09<br>1.06<br>5.05<br>0.48<br>0.41 | $ \begin{array}{c c} 1.07 \\ 1.15 \\ 0.90 \\ 61.68 \\ 13.61 \\ 20.60 \\ 3.02 \end{array} $ | 21.85<br>11.93<br>4.07<br>75.27<br>65.48<br>40.98<br>17.23 | 303.96<br>20.87<br>13.04<br>9.85<br>11.16<br>42.00<br>44.69 |  |
| Unsupervised | PUDIP<br>U3Net                                                                             | 17.53<br>0.69                                                                      | 15.16<br><b>0.25</b>                                        | 7.87<br><b>0.19</b>                                                                           | <u>0.34</u><br><b>0.16</b>                             | <u>0.11</u><br><b>0.10</b>                             | 13.10<br>1.12                                                      | 7.22<br><b>0.38</b>                                    | 2.62<br><b>0.27</b>                                                                               | <u>0.38</u><br><b>0.17</b>                                                          | <u>0.12</u><br>0.12                                  | 2.33<br>0.74                                                                               | 21.58<br>8.77                                              | 99695.01<br>10.28                                           |  |

Our U3Net achieves the best results in 8/10 settings, using a lightest-weight unrolling network.

#### Visualization on Simulated Phase Patterns



Residual visualizations of PU results on MoGR (top) and RME (bottom)

Our U3Net provides the best residual image results in both datasets.

### Evaluation on InSAR Data

| SNR(dB) | LS   | QGPU | Ryu. et al. | PhaseNet2.0 | SQD-LSTM | EESANet | TriNet | PU-GAN | PUNet | UFormer | Restormer   | PUDIP       | U3Net |
|---------|------|------|-------------|-------------|----------|---------|--------|--------|-------|---------|-------------|-------------|-------|
| 5       | 3.31 | 3.13 | 1.41        | 2.28        | 1.76     | 2.45    | 5.04   | 13.73  | 9.59  | 1.46    | <u>1.06</u> | 9.99        | 1.00  |
| 10      | 1.84 | 1.96 | 1.27        | 1.69        | 1.52     | 1.99    | 4.69   | 11.84  | 9.20  | 1.28    | <u>0.93</u> | 5.30        | 0.82  |
| 20      | 0.94 | 1.13 | 1.24        | 1.43        | 1.48     | 1.79    | 4.46   | 11.62  | 9.01  | 0.97    | 0.91        | <u>0.47</u> | 0.46  |



Our U3Net ranks the first in all settings and shows minimum residual.

## **Ablation Analysis**

#### ➤ Loss function



#### $\succ$ Visualization of *E*



# **Conclusion and Future Work**

• To conclude





Wrapped Phase Images



Wrapped Phase Images



End-to-End Unsupervised Learning V Bypassing both issues

☆Our work

#### • In future

- Improving the perceiving schemes for outlier points.
- > Enhancing the model robustness to noise inconsistency.

#### Take home messages

- PU can be solved in unsupervised learning manner by utilizing the gradient or wrapped gradient information of wrapped phase images.
- Well designed physic-encoded NN yields better performance and less complexity.

