

Unsupervised Deep Unrolling Networks for Phase Unwrapping

Zhile Chen Yuhui Quan^{*} Hui Ji

South China University of Technology

Phase Unwrapping (PU) in Imaging

Applications

3D Depth Sensing Tringe Projection The InSAR Imaging The MRI

Formulation of PU

 $Y \in \mathbb{R}^{M \times N}$: Wrapped phase image; $X \in \mathbb{C}^{M \times N}$: GT Phase image; $N \in \mathbb{R}^{M \times N}$: Measurement noise;

W: Wrapping operator: $W(\theta) = ((\theta + \pi) \mod 2\pi) - \pi$

PU needs to reconstruct X from Y.

Challenges: 1) $W \rightarrow$ Solution ambiguity; 2) $N \rightarrow$ Noise corruption.

End-to-End Supervised Learning for PU

- Standard CNNs; Treat PU as pixel-wise classification, e.g., PhaseNet 2.0 $[1]$ and EESANet $[2]$. ※**Struggle to scale to wide-range phase.** ※**Cannot capture long-range spatial dependencies.**
- RNN-based Method; Directly map wrapped phases to unwrapped ones, e.g., SQD-LSTM [3]. ※**A limited number of paths (due to cost constraint) cannot capture rich dependencies. Both are impractical in Archivesor and wrap counts are costly to collect.**
 Both are impractical ii \rightarrow **GT phase images and wrap counts are costly to collect.**
 Both are impractical !! \rightarrow GT phase images and wrap co

[1] Spoorthi G E, Gorthi R K S S, Gorthi S. PhaseNet 2.0: Phase unwrapping of noisy data based on deep learning approach. IEEE TIP, 2020. [2] Zhang J, Li Q. EESANet: edge-enhanced self-attention network for two-dimensional phase unwrapping. Optics Express, 2022. [3] Perera M V, De Silva A. A joint convolutional and spatial quad-directional LSTM network for phase unwrapping. ICASSP, 2021.

Dataset-free Unsupervised Learning for PU

Re-parameterize a phase image via a CNN and optimize it with wrapped fidelity.

- ◆ No need for GT phase images. **Seed updating weight**
- ※ **Slow due to per-sample training.**
- ※ **Ignore knowledge from external data.**

For efficient inference & releasing the use of GT **End-to-end unsupervised deep learning for PU**

[4] Yang F, Pham T-a, Brandenberg N, et al. Robust phase unwrapping via deep image prior for quantitative phase imaging. IEEE TIP, 2021

Contributions

The 1st external unsupervised DL approach for end-to-end PU.

- The first exploration of deep unrolling network for PU, founded on a variational model utilizing wrapped gradients and perceiving outliers.
- A re-corruption-based self-reconstruction loss function with noise tolerance to leverage Itoh's continuity condition, and a self-distillation loss function for improved generalization.
- Better than existing unsupervised methods & competitive against the supervised ones.

Core Ideas

For those whose adjacent points share the same wrap count, $\nabla Y[m, n] = \nabla X[m, n] + \nabla N[m, n]$. (1)

Due to majority of non-jump points, ∇Y can be viewed as noisy label of ∇X , for self-supervised loss function.

2D Itoh's Condition

In **noisy** case: $Y = W(X + N)$, for points satisfying $\|\nabla X[m, n] + \nabla N[m, n]\|_{\infty} < \pi$, $W(\nabla Y[m, n]) = \nabla X[m, n] + \nabla N[m, n].$ (2)

For those share different wrap count and satisfy $\|\nabla X[m, n] + \nabla N[m, n]\|_{\infty} \geq \pi,$

 $W(\nabla Y[m, n]) = \nabla X[m, n] + \nabla N[m, n] + 2\pi K.$ (3)

Variational Regularization Model

 $\min_{\mathbf{y} \in \mathcal{F}}$

- Unfold the proximal gradient descend solver of: $($ $\nabla X - \mathcal{W}(\nabla Y) + E \parallel_F^2 + \phi(X) + \psi(E)^2$ **Regularizing** \boldsymbol{X} **Regularizing** *E* for sparsity
- X,E • Leveraging an E for absorbing the $2\pi K$ in $W(\nabla Y) = \nabla X + \nabla N + 2\pi K$. For j from 1 to J ,

$$
\mathbf{X}_{(j)}^{(t)} = \mathbf{V}_{(j-1)}^{(t)} + \lambda^{(t)} \text{div}(\nabla \mathbf{V}_{(j-1)}^{(t)} - (\mathcal{W}(\nabla \mathbf{Y}) - \mathbf{E}^{(t-1)})),
$$
\n
$$
\alpha_{(j)} = 1/2 \cdot (1 + \sqrt{1 + 4\alpha_{(j-1)}^2}),
$$
\n
$$
\mathbf{V}_{(j)}^{(t)} = \mathbf{X}_{(j)}^{(t)} + \frac{\alpha_{(j-1)} - 1}{\alpha_{(j)}} \cdot (\mathbf{X}_{(j)}^{(t)} - \mathbf{X}_{(j-1)}^{(t)}),
$$
\nAccording data fidelity term\n
$$
\mathbf{X}^{(t)} = \text{NN}_{\phi} \left(\mathbf{X}_{(j)}^{(t)}, \mathcal{G}_{t} \left(\mathbf{X}_{(j)}^{(t)} \right), \mathbf{w}^{(t)} \right),
$$
\n
$$
\mathbf{E}^{(t)} = \text{NN}_{\phi} \left(\mathbf{E}^{(t-1)}, \mathbf{d}^{(t)} \right),
$$
\n
$$
\mathbf{W}_{(t)} = \mathbf{W}_{\phi} \left(\mathbf{E}^{(t-1)}, \mathbf{d}^{(t)} \right),
$$
\n
$$
\mathbf{W}_{(t)} = \mathbf{W}_{\phi} \left(\mathbf{E}^{(t-1)}, \mathbf{d}^{(t)} \right),
$$
\n
$$
\mathbf{W}_{(t)} = \mathbf{W}_{\phi} \left(\mathbf{E}^{(t-1)}, \mathbf{d}^{(t)} \right),
$$
\n
$$
\mathbf{W}_{(t)} = \mathbf{W}_{\phi} \left(\mathbf{E}^{(t-1)}, \mathbf{d}^{(t)} \right),
$$
\n
$$
\mathbf{W}_{(t)} = \mathbf{W}_{\phi} \left(\mathbf{E}^{(t-1)}, \mathbf{d}^{(t)} \right),
$$
\n
$$
\mathbf{W}_{(t)} = \mathbf{W}_{\phi} \left(\mathbf{E}^{(t-1)}, \mathbf{d}^{(t)} \right),
$$
\n
$$
\mathbf{W}_{(t)} = \mathbf{W}_{\phi} \left(\mathbf{E}^{(t-1)}, \mathbf{d}^{(t)} \right),
$$

where $\lambda^{(t)}, w^{(t)}, d^{(t)}$ are learned from condition (noise strength, etc.) via CAM module.

U3Net (U3 = Unsupervised, Unrolling, Unwrapping)

Unsupervised Loss functions

• Noise-resistant self-reconstruction loss:

 \mathcal{L}_{sr} : = $\mathbb{E}_{\boldsymbol{U}} || \mathcal{W} [\boldsymbol{V} \mathcal{F} (\mathcal{W} (\boldsymbol{V} \boldsymbol{Y} + \boldsymbol{V} \boldsymbol{U})) - (\boldsymbol{V} \boldsymbol{Y} - \boldsymbol{V} \boldsymbol{U})]||_F$ 2 **Unsupervised loss approaximates supervised loss.**

Proposition. Let $Y = W(X + N)$. Suppose $\nabla Y[m, n] = \nabla X[m, n] + \nabla N[m, n]$ is satisfied at all points. Assume that N , $U \sim \mathcal{P}$ are independent. Then, we have that $\mathbb{E}_{Y,U} || \nabla \mathcal{F}(\mathcal{W}(\nabla Y + \nabla U)) - (\nabla Y - \nabla U) ||_F$ 2 $=$ $\mathbb{E}_{X,N,U}$ $\left\|\nabla \mathcal{F}(\mathcal{W}(\nabla Y + \nabla U)) - \nabla X\right\|_{\text{F}}$ 2 $+ C_0$, where C_0 is a constant.

- \triangleright Once we sample **U** from the distribution of **N**, the training with \mathcal{L}_{sr} is equivalent to learning noiseless spatial gradient, supervised by ∇X .
- Introducing an outer W for counteracting the impact of outliers.
- \triangleright Inductive bias of unrolling CNNs helps reduce the ambiguity of outliers.

Unsupervised Loss functions

• Self-distillation loss: $\mathcal{L}_{\text{sd}} \mathpunct{:} = \mathbb{E}_{\textit{U}} \big\| \nabla \mathcal{F} \big(\mathcal{W}(\nabla \textbf{Y}) \big) - \nabla \mathcal{F} \big(\mathcal{W}(\nabla \textbf{Y} + \nabla \textbf{U}) \big) \big\|_{\text{F}}^2$ 2 ,

 F denotes the NN detached from the previous iteration with stopped gradient.

- \triangleright Reducing the NN's prediction variance, enhancing the PU accuracy.
- Reconciling the input of unrolling network, e.g. $W(\nabla Y + \nabla U) \rightarrow W(\nabla Y)$, improving generalization ability.
- Total loss:

$$
\mathcal{L}_{\text{total}} = \mathcal{L}_{\text{sr}} + \eta \mathcal{L}_{\text{sd}}, \qquad \eta \in \mathbb{R}^+
$$

Evaluation on Simulated Phase Patterns

Boldfaced: best results; Underlined: second best results at each column. NRMSE is used for evaluation.

Our U3Net achieves the best results in **8/10** settings, using a lightest-weight unrolling network.

Visualization on Simulated Phase Patterns

Residual visualizations of PU results on MoGR (top) and RME (bottom)

Our U3Net provides the best residual image results in both datasets.

Evaluation on InSAR Data

Our U3Net ranks the first in all settings and shows minimum residual.

Ablation Analysis

\triangleright Loss function \triangleright Visualization of E

Conclusion and Future Work

• To conclude

Wrapped Phase Images

Wrapped Phase Images

Bypassing both issues

☆Our work

• In future

- \triangleright Improving the perceiving schemes for outlier points.
- \triangleright Enhancing the model robustness to noise inconsistency.

Take home messages

- PU can be solved in unsupervised learning manner by utilizing the gradient or wrapped gradient information of wrapped phase images.
- Well designed physic-encoded NN yields better performance and less complexity.

