

FineParser

0.9435

FineParser: A Fine-grained Spatio-temporal Action Parser for Human-centric Action Ouality Assessment (Oral)

²Wangxuan Institute of Computer Technology, Peking University

Action Quality Assessment (Oral)

Jinglin Xu¹, Sibo Yin², Guohao Zhao², Zishuo Wang², Yuxin Peng^{2†}

School of Intelligence Science and Technology, University of Science and Technology Beijing

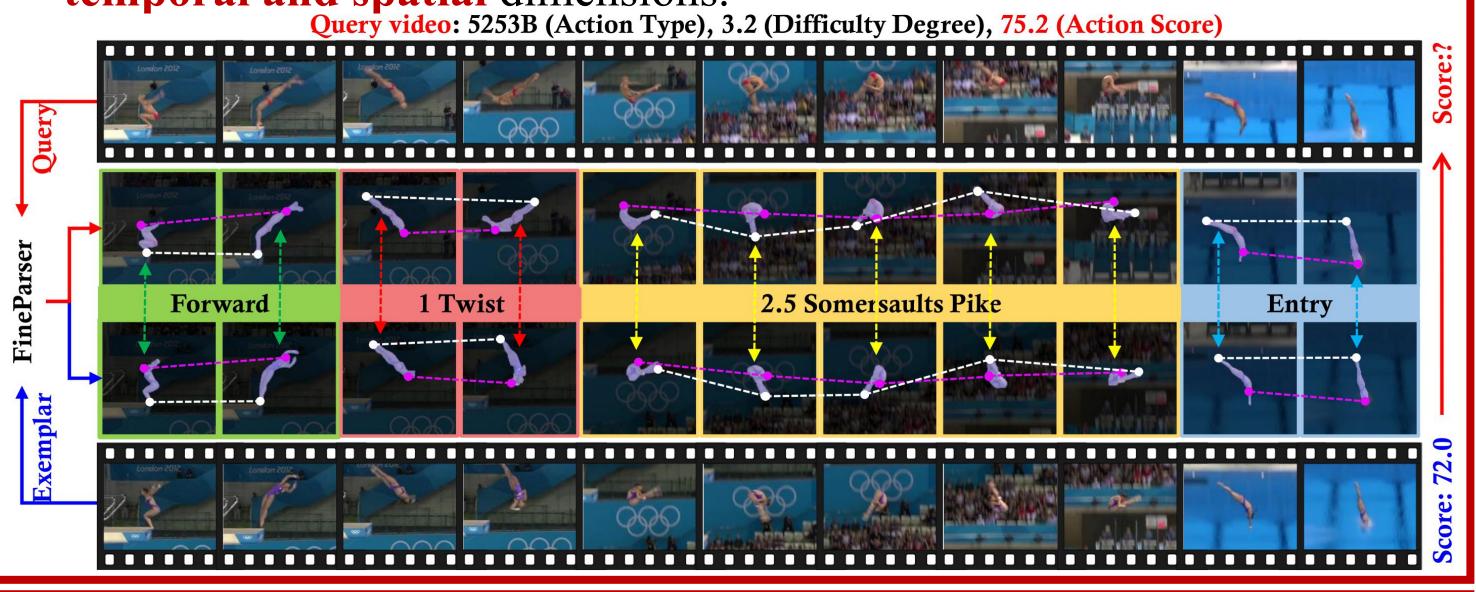
Transformer Decoder

Transformer Decode

patial Action Parser (SAP)

Code Pag

PL's Website


MIPL's GitHub Personal HomePage

Motivation

- Action Quality Assessment (AQA) aims to evaluate the execution quality of a specific action by predicting a score after analyzing the performance of the action in a video. It is a crucial technique direction in video action understanding and holds extensive application prospects in fields such as healthcare and sports analysis.
- Due to the lack of fine-grained spatio-temporal action annotations, existing AQA methods mainly captured video-level representations and failed to parse actions across both spatial and temporal dimensions.

Contribution

- Human-centric foreground action mask annotations for FineDiving dataset, FineDiving-HM.
- A new fine-grained AQA method, FineParser, which captures human-centric foreground action representations and parses actions across temporal and spatial dimensions.

Experiments					
Methods	AQA Metrics		Methods	MTL-AQA	
	$ ho \uparrow$	R - $\ell_2 \downarrow (\times 100)$		$\rho \uparrow$	$R-\ell_2\downarrow(\times 100)$
C3D-LSTM [26]	0.6969	1.0767	Pose+DCT [29]	0.2682	/
C3D-AVG [25]	0.8371	0.6251	C3D-SVR [26]	0.7716	/
MSCADC [25]	0.7688	0.9327	C3D-LSTM [26]	0.8489	/
I3D+MLP [31]	0.8776	0.4967	C3D-AVG-STL [25]	0.8960	/
USDL [31]	0.8830	0.4800	C3D-AVG-MTL [25]	0.9044	/
	0.9241	0.3474	USDL [31]	0.9231	0.4680
MUSDL [31]			MUSDL [31]	0.9273	0.4510
CoRe [37]	0.9308	0.3148	TSA-Net [34]	0.9422	/
TSA [36]	0.9324	0.3022	CoRe [37]	0.9512	0.2600

FineParser

0.9585

0.2411

0.2602

Fine-Parser: Fine-grained Spatial-temporal Action Parser Fine-grained Spatial-temporal Representation Learning Ouery Exemplar Fine-grained Spatial-temporal Input Video Fine-grained Spatial-temporal Representations Fine-grained Spatial-temporal Representations $f_{L'+1}$ Static Visual Encoder (SVE) PSNet Target action $f_{L}(X_{S}^{l})$ $f_{L}(X_{S}^{l})$ Target action Static visual $f_{L}(X_{S}^{l})$ Target action $f_{L}(X_{S}^{l})$ Target action $f_{L}(X_{S}^{l})$ Target action $f_{L}(X_{S}^{l})$

Spatial Action Parser (SAP): SAP employs a 3D CNN-based backbone^[1] to capture multi-scale representations from input video and generates foreground action masks.

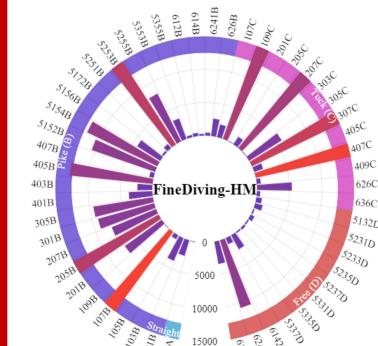
$$\mathbf{M}_{j,i}^{\text{up}_1} = \mathcal{B}_{j,1}^{\text{up}}(\mathcal{B}_j(\mathbf{X}_i)), \ \mathbf{M}_{j,i}^{\text{up}_2} = \mathcal{B}_{j,2}^{\text{up}}(\mathcal{B}_j(\mathbf{X}_i)),$$
$$\mathbf{M}_{i}^{\text{fuse}} = \text{Conv3d}(\text{Concat}(\{\mathbf{M}_{j,i}^{\text{up}_1}\}_{j=1}^{4})),$$

where M_i^{fuse} is the target actions mask of X_i .

■ **Temporal Action Parser (TAP):** TAP utilizes procedure segmentation network^[2] to predict the switches of sub-actions.

$$\hat{t}_k = \underset{\frac{T}{T'}(k-1) < t \leq \frac{T}{T'}k}{\operatorname{arg\,max}} \mathcal{S}(\mathbf{X}_V)[t, k],$$

where \hat{t}_k is the predicted k-th step transition.


- Static Visual Encoder(SVE): SVE captures static features and more contextual information from single frames.
- Fine-grained Contrastive Regression (FineReg): FineReg evaluates contrastive scores from pairwise steps and static representations, which can be expressed as:

$$\hat{y}_X = \sum_{l=1}^{L'+1} \lambda_l (\mathcal{R}_V(\mathbf{D}_l^V) + \mathcal{R}_S(\mathbf{D}_l^S)) + y_Z,$$

where y_Z is the score of examplar video and \hat{y} is the predicted score.

- Visualization and distribution FineDiving-HM dataset.
- We provided FineDiving-HM with 312,256 mask frames across 3000 videos, in which each mask labels the target action region to distinguish the human-centric foreground and background.

Visualization

- Visualization of mask predictions produced by SAP.
- The predicted masks can focus on the target action regions in each frame, minimizing the impact of invalid backgrounds on action quality assessment.
- [1] Jinglin Xu, et al., Finediving: A fine-grained dataset for procedure-aware action quality assessment. CVPR 2022
- [2] Xumin Yu, et al., Group-aware contrastive regression for action quality assessment. ICCV 2021.